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Abstract— Output voltage regulation is a primary perfor-
mance objective in power electronics systems which are not
supported by a stiff voltage source. In this paper, we pose
an optimal voltage control problem for ac inverter systems
and study the structure of the resulting feedback laws. Here,
it is demonstrated that the solution to the optimal voltage
regulation control problem exhibits an inner current-controller
structure even though there are no explicit objectives on
tracking current which are targeted. Furthermore, the outer-
loop voltage control and inner-loop current control structure
is insensitive to the weighting transfer functions used in the
optimal control problem. Although the inner-outer structure
has been used in prior works, the optimal nature of such a
structure was not known. In deriving the optimal controller, we
also present a systematic design framework which is cognizant
of the physical properties of inverters. Case studies are used
to study the optimal controller and its performance.

I. INTRODUCTION

Voltage controllers form an integral component of mi-
crogrid systems, uninterruptible power supplies, dc-dc con-
verters, and systems which are not supported by a stiff
voltage source or grid. In so-called master-slave systems,
the system voltage is supported by a single “master” power
converter which typically acts on a fixed voltage reference
and all remaining units regulate their currents [1]. In parallel
converter systems, a centralized controller can be configured
such that the voltage across a common load tracks a single
reference [2], [3]. For decentralized implementations, droop-
controlled inverters [4], [5] and dc-dc converters [6] each
utilize an independent and variable voltage reference which
depends on the output of each unit. Irrespective of how
the voltage reference is generated, a voltage controller is
needed to modulate the power electronics such that the
output voltage tracks the reference. In this paper, we study
the optimal structure of voltage controllers for ac inverter
systems. In deriving the controller, we present a system-
atic design framework for designing multivariable voltage
controllers with robust and optimal performance. The de-
sign framework provides a systematic means of targeting
performance specifications that arise in typical ac power
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systems. As our main result, we show that the resulting
optimal controller has an outer voltage controller and an
inner current controller embedded in it. This result confirms
that the inner-outer structure is optimal and substantiates the
longstanding observation in conventional designs that inner-
outer structures have superior performance [7]–[9].

Problems related to robust and optimal design of inverter
controllers have received recent attention. In [10], [11],
inverter controller parameters are obtained after solving
a servomechanism robust optimization problem. The H∞
framework and internal model principle were recently ap-
plied with the objective of rejecting periodic disturbances
in microgrids [12], [13]. Along similar lines, optimal con-
trollers for static VAR compensators have been investigated
[14]. Here, our focus is on studying the structure of the op-
timal controller itself and outlining an unambiguous design
procedure.

The outer-voltage inner-current control structure has a
rich history in the power community and has been utilized
extensively in single- and three-phase [8], [15] inverters
as well as dc-dc converters [7], [9]. Going back several
decades, some of the earliest uses of the inner-outer control
structure are found in dc-dc converter applications [16]
and was first employed due to its superior performance in
comparison to single-loop controllers. Subsequent analysis
and engineering judgment have indicated an inherent ro-
bustness to load variations and its application has become
well-established in inverters for ac systems [8]. Despite its
advantages over single-loop controllers, traditional inner-
outer design methods are iterative in nature, are not tailored
for multiple input systems, and do not offer performance
guarantees. In contrast, the proposed method is well-suited
for multivariable settings and guarantees optimality.

The main contributions of this paper are as follows: i)
we demonstrate that that the optimal voltage controller has
an inner-outer structure, and ii) in deriving the optimal
controller, we describe a systematic design process which
incorporates practical performance specifications in ac in-
verter systems.

The manuscript is organized in the following manner.
In Section II we introduce the reader to the inverter sys-
tem model, formulate the design problem, derive the plant
model, and outline practical considerations for ac power
electronics systems. The classical inner-outer structure is
introduced and its correspondence with the optimal H∞
is established in Section III. Concluding statements are in
Section IV.
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Fig. 1. A system consisting of a single-phase inverter connected across
an impedance load with an LC filter and closed-loop controller. The
unmodelled current source, ĩd, accounts for unknown sources and loads.
The inverter hardware, shown on the bottom, produces an instantaneous
switched voltage v̂inv. Using averaging, the inverter is modeled as a
controllable voltage source which follows the signal vinv.

II. SYSTEM MODEL, PROBLEM FORMULATION, AND
CONTROL DESIGN

A. Inverter System Description

Consider the system in Fig. 1 which consists of a power
electronics inverter connected across an impedance load, zL.
The inverter draws power from a dc source and generates a
switched ac voltage, v̂inv, which serves as a control variable.
Using pulse width modulation (PWM) techniques and a
high switching frequency, the switch cycle average of v̂inv
follows the command vinv [8]. The inductance, L, and
capacitance, C, filter high-frequency harmonics generated
by the switching action. R accounts for ohmic losses in the
inductor and r is the branch resistance which interfaces the
inverter terminals to the remaining system. ĩd encapsulates
the behavior of unknown loads and sources in the system
and is treated as a disturbance. Since the switching period
is typically much smaller than the filter time-constants, we
model the switch terminals as a controllable voltage source
which follows the control signal vinv. This averaged model
facilitates design, modeling, and analysis.

We assume that the measured signals include the inductor
current iinv, capacitor voltage v, and output branch current
i. The objective is to design a feedback law that generates
a voltage command, vinv, which ensures, i) v tracks v∗,
ii) control performance is robust to parametric uncertainty,
iii) the recovery time after disturbances and transients is
small, and iv) the control signal, vinv, respects bandwidth
limitations.
H∞ methods provide a framework for addressing multi-

ple objectives such as those in the previous paragraph. With
this approach, a linear stabilizing control law is obtained
by posing and solving an optimization problem. In the
remainder of the paper, we apply the H∞ framework to
derive a controller K(s) and subsequently show that the
optimal design exhibits an inner-outer structure.
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Fig. 2. Block-diagram of the inverter circuit. The regulated variables, z1
and z2, are shown in red and the measurements are shown in green.

B. Problem Formalization

We denote i) the external input as w(s)1 where
w(s) = id(s) for the system in Fig. 1, ii) the con-
trol input as u(s) = vinv(s) − v(s) for the single in-
verter system, iii) the regulated output as z(s) and we
pick z(s) = [W1(s)(v

∗(s)− v(s)),W2(s)vinv(s)]
> where

W1(s) and W2(s) are user-defined weighting transfer func-
tions, and iv) the measured output as y(s) where y(s) =
[v∗(s)− v(s), i(s), iinv(s)]> for the inverter circuit. The
physical configuration for this system is shown in Fig. 1.

The inductor current is given by

iinv(s) = Yinv(s) (vinv(s)− v(s)) , (1)

where Yinv(s) := (sL+R)
−1. The load voltage can be

expressed as

vL(s) =
(
η(s)iinv(s) + ĩd(s)

)
Y −1rLC(s), (2)

where we define

η(s) :=
zC(s)

zC(s) + r
, (3)

YrCL(s) := YC(s)η(s) + YL(s), (4)

and YC(s) := z−1C (s) = sC. Along similar lines, the
capacitor voltage can be written as

v(s) = (riinv(s) + vL(s)) η(s). (5)

Lastly, the capacitor state-equation can be rearranged to
yield

i(s) = iinv(s)− YC(s)v(s). (6)

Using (1)–(6), recalling u(s) = vinv(s) − v(s) and z(s) =
[W1(s)(v

∗(s)− v(s)),W2(s)vinv(s)]
>, the block-diagram

of the inverter circuit with the regulated variables is given
in Fig. 2. Note that the transfer function, Wd(s) is a
user-defined transfer function which defines the expected
frequency range of disturbances.

1From here forward, s = σ + jω is a complex variable and proper
transfer functions are assumed throughout.



The mapping from inputs w(s) and u(s) to outputs z(s)
and y(s) is given as:

W1(s)(v
∗(s)− v(s))

W2(s)vinv(s)
v∗(s)− v(s)

i(s)
iinv(s)

 = G(s)

[
id(s)

vinv(s)− v(s)

]
,

(7)
where, the generalized plant transfer matrix is
−W1(s)Wd(s)η(s)

YrLC(s) −W1(s)η(s)(1+rYL(s))Yinv(s)
YrLC(s)

W2(s)Wd(s)η(s)
YrLC(s) W2(s)

(
1+

η(s)(1+rYL(s))Yinv(s)

YrLC(s)

)
− η(s)
YrLC(s) −η(s)(1+rYL(s))Yinv(s)

YrLC(s)

−η(s)Yc(s)
YrLC(s)

η(s)YL(s)Yinv(s)
YrLC(s)

0 Yinv(s)


︸ ︷︷ ︸

=G(s)

. (8)

The derivation of (8) is summarized in Appendix-A. Having
obtained G(s), the controller K(s) can be found after
specifying the user-defined transfer functions W1(s), W2(s),
and Wd(s) and solving the H∞ design problem.

Remark 1: Although the load is generally unknown and
does not have static parameters, an estimate of the load
admittance can be utilized in the plant model. Subsequently,
we show robust performance to load variations.

C. Design of Weighting Transfer Functions

Here, we outline a set of guidelines for designing the cost
transfer functions which encapsulate practical performance
objectives and system properties.

1) Voltage regulation function W1(s): Referring to the
first row in (7), it is apparent that W1(s) has a direct
relationship on the voltage tracking error. Accordingly,
W1(s) is designed such that tracking error at the nominal
ac frequency, ωo, is minimized, the resonant behavior of
the inverter LC filter is damped by the controller, and
performance within the inverter bandwidth is emphasized.
Accordingly, W1(s) can be ascribed the following general
form:

W1(s) = κ1Gωo(s)Grlc(s)Gbw(s), (9)

where κ1 is an overall gain factor, Gωo(s) is tuned such
that it has a large amplitude at ωo, Grlc(s) damps out
the resonant behavior of the RLC elements in the filter,
and Gbw(s) emphasizes performance within the inverter
bandwidth.2 Gωo(s) can be written as the superposition of
a band-pass and notch filter with the following expression

Gωo(s) =
κNs

2 + 2κBPζωos+ κBPω
2
o

s2 + 2ζωos+ ω2
o

, (10)

where κN and κBP are the gains of the notch and bandpass
components, respectively, and ζ is the damping factor. Since
we wish to emphasize performance at the rated frequency,
ωo, we must pick κBP > κN. For variable frequency ac

2In practice, the inverter bandwidth is limited by the switching frequency,
sampling frequency, and time-step size of the digital controller.

systems, it may be necessary to increase ζ to broaden the
frequency range where Gωo(s) is large. This approach of
emphasizing the controller response at the rated system fre-
quency is similar to the widely used proportional-resonant
controller for ac systems [20], [21].

Undesired inverter filter resonance can be mitigated by
including a model of the filter within Grlc(s). Referring
to Fig. 1, denote the parallel impedance of the RL branch
and capacitor as zf(s) := (R+ sL) ‖(sC)−1. We ascribe
Grlc(s) the following form:

Grlc(s) = (zf(s) + 1)
den(zf(s))

α(s)
. (11)

In practice, the output filter is designed with minimal
resistive losses such that high efficiency is maintained. Con-
sequently, zf(s) usually exhibits a tight peak at 1/

√
LC and

small gain at all other frequencies. To provide robustness
to parameter variations (typical filter component tolerances
are ±10%) we wish to damp frequencies around 1/

√
LC

by tuning Grlc(s). Towards that end, den(zf(s))/α(s) is
selected to attain the desired response around 1/

√
LC and

the addition of 1 in the first factor of (11) flattens the gain
to unity at asymptotically high and low frequencies.

Reference tracking at frequencies within the inverter
bandwidth can be further enhanced by including the transfer
function, Gbw(s). Specifically, to ensure W1(s) does not
emphasize high frequencies which cannot be realized by
the hardware, Gbw(s) can be selected as a low-pass filter.
Here, we pick

Gbw(s) = (ωlpf/ (s+ ωlpf))
2
. (12)

Lastly, the overall gain factor, κ1, in (9) is proportional to
the voltage regulation aggressiveness of the controller and
can be tuned accordingly.

2) Inverter voltage control effort weighting function
W2(s): Referring to (7), it follows that W2(s) corresponds
to shaping the performance of vinv. Since there are no corre-
sponding reference signals to track, W2(s) can be designed
to suppress high-frequency control effort. Accordingly, a
high-pass filter or a related variation can be used as given
below

W2(s) =W3(s) =
c1s+ ωw

s+ c2ωw
, (13)

where c1 and c−12 are the asymptotic gains at high fre-
quencies and dc, respectively, and c1ωw and c−12 are the
frequency breakpoints.

3) Disturbance current transfer function Wd(s): The
function, Wd(s), characterizes the response of expected
disturbances. For systems with linear loads, we can assume
that disturbance currents have components primarily at ωo.
However, if nonlinear disturbances, such as diode rectifier
loads and switching power supplies, are anticipated, Wd(s)
can be chosen to emphasize higher order harmonics. If the
frequency content of unmodelled loads is anticipated, Wd(s)
can be chosen accordingly. For instance, the harmonics of
rectifier loads are well characterized in [18], [19]. Here,
we choose this function as a low-pass filter (i.e., Wd(s) =
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Fig. 3. Conventional voltage controller with an inner-outer structure.

1/
(
ω−1d s+ 1

)
) such that low-order harmonic rejection is

emphasized.

III. OPTIMAL CONTROL STRUCTURE AND
PERFORMANCE

In this section, we first introduce the classical voltage
controller and subsequently demonstrate its correspondence
with the proposed H∞ design.

A. The Outer-Voltage Inner-Current Control Structure
Consider the well-known voltage controller in Fig. 3

which exhibits an inner-outer structure [7], [8], [15]. In
this classical system, an outer voltage controller, Kv(s),
generates a reference, i∗inv(s), for an inner current controller,
Ki(s). The feedforward terms, i(s) and v(s), are used to
cancel signals which act as disturbances in the LC filter
plant. The intuition behind this design is that the inner
current controller allows for direct control of the energy
delivered by the inductor without introducing delays from
the capacitor. The architecture in Fig. 3 dates back several
decades [16]. Referring to Fig. 3, the current controller
output can be written as

vinv(s)− v(s)
= Ki(s) (i

∗
inv(s)− iinv(s))

= Kv(s)Ki(s) (v
∗(s)− v(s)) +Ki(s) (i(s)− iinv(s)) .(14)

Next, let’s consider the H∞ controller, K(s), that
we designed in Section II. This controller has inputs
[v∗(s)− v(s), i(s), iinv(s)]> and output signal is u(s) =
vinv(s)−v(s).3 Denote the controller transfer matrix entries

3The decision to pick u(s) = vinv(s) − v(s) becomes clear since this
provides an intrinsic voltage feedforward.
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Fig. 5. Responses of the controller for filter parameters L = 1 mH,
C = 22µF, and R = 10 mΩ when (a) κ1 = 102, and (b) κ1 = 104.
The voltage tracking error to control signal transfer function is shown on
the left. The responses from the output and inductor currents to control
signal are given on the right. Note that the magnitudes of the currents-to-
control transfer functions coincide over most of the frequency range and the
phases are separated by 180o. Here, the optimality of a control architecture
with an “outer” voltage controller and “inner” current controller is implied.

as K(s) = [Kue(s),Kui(s),Kuinv(s)], where Kue(s) is
the transfer function between the voltage error and control
signal, Kui(s) processes the output current measurement,
and Kuinv(s) corresponds to the inverter inductor current.
If Kui(s) ≈ −Kuinv(s), it follows that

u(s) := vinv(s)− v(s)
= Kue(s) (v

∗(s)− v(s)) +Kui(s)i(s) +Kuinv(s)iinv(s)

≈ Kue(s) (v
∗(s)− v(s)) +Kui(s) (i(s)− iinv(s)) . (15)

Comparing (15) and (14), it is apparent that if Kui(s) ≈
−Kuinv(s) holds, then the H∞ controller, K(s), has the
same structure as the classical controller in Fig. 3. This leads
us to the main result of the paper.

B. Optimality of inner current control and outer voltage
control configuration

Given the generalized plant matrix in (8), the weighting
transfer functions in (9)–(13), and the parameters in Table
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Fig. 6. Responses of the controller for filter parameters L = 3 mH,
C = 66µF, and R = 30 mΩ when (a) κ1 = 102, and (b) κ1 = 104.
As shown, the inner-outer structure remains despite variations in the filter
parameters and control gains.

1, the controller, K(s), is obtained after solving the H∞
design problem. As illustrated in Fig. 4, the voltage tracking
weighting transfer function, W1(s), has peaks at 2π60 rad/s
and 1/

√
LC. The transfer function, W2(s), exhibits a high-

pass characteristic. Having obtained the controller, we now
study the responses of Kui(s) and Kuinv(s).

As shown in, Figs. 5 and 6, the control response to both
current measurements is similar in magnitude over a broad
frequency range and they exhibit a 180o phase shift between
each other. This result confirms Kui(s) ≈ −Kuinv(s)
which implies the relationship in (15) and establishes a
correspondence with the conventional inner-outer response
in (14). This observation holds for parametric variations in
the plant output filter and the controller gains. In particular,
the L, C, and R filter values in Figs. 5 and 6 differ by a
factor of 3 and the respective subplots utilize a weighting
coefficient κ1 that varies by a factor of 100. This provides
strong evidence that Kui(s) ≈ −Kuinv(s) holds over a
broad set of conditions. It is worth noting and especially
interesting that the inner-current controller appears despite
the exclusion of current as a regulated variable.
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Fig. 7. A comparison of disturbance rejection for filter parameters L =
1 mH, C = 22µF, and R = 10 mΩ when, (a) the weighting coefficient
κ1 = 102, and (b) κ1 = 104. In the simulation, a sinusoidal current
disturbance is abruptly started at t = 0.1 s. As illustrated, the controller
with the larger coefficient in W1(s) reduces the error amplitude during
transients and reaches a lower steady-state error. Note that the error during
the transient exhibits oscillatory behavior at the filter resonant frequency.

C. Time-Domain Performance

Here we analyze the time-domain performance of the
system in Fig. 1 with the optimal controller. In the gener-
alized plant matrix, a nominal parallel RL load is assumed
which consumes 1 kW of real power with a power factor
of 0.8. A sinusoidal voltage reference is utilized where
v∗(t) = 120

√
2 sin (ωot).

We observe the case when a disturbance current, id, is
injected into the load. Referring to Fig. 7, the inverter is
initially delivering power to the nominal load. At t = 0.1 s,
a sinusoidal disturbance current with amplitude 10A and
120o phase shift is initiated. To illustrate how controller
performance is easily adjusted by tuning the weighting
transfer functions, we compare voltage regulation when the
performance coefficient κ1 in (9) is adjusted. In Figs. 7(a)
and 7(b), κ1 is assigned a value of 102 and 104, respectively.
In comparing the response of the two systems, it is evident
that the controller with the larger value of κ1 yields a smaller
voltage tracking error during both transients and in steady-
state.

IV. CONCLUSION

Here, we studied the optimal structure of voltage con-
trollers for inverters. It was shown that the optimal con-



TABLE I
PLANT AND CONTROLLER PARAMETERS.

R = 10 mΩ, 30 mΩ r = 1 Ω
C = 22µF, 66µF L = 1 mH, 3 mH

Y −1
L(nom)

= 12 Ω + s(42.4 mH) κ1 = 102, 104

κN = 1 κBP = 102

ζ = 0.01 α(s) = LCs2 + 100RCs+ 1

ωlpf = 8ωo c1 = c2 = 0.01
ωw = 4ωo ωd = 3ωo

troller, obtained via H∞ synthesis, contains outer-voltage
and inner-current control loops embedded in it. This result is
obtained despite variations in the design parameters and the
intentional exclusion of current design specifications. This
suggests that the optimality of the inner-outer structure holds
over a wide parameter space and is generally applicable. As
part of future efforts, an analytical proof of the inner-outer
structure is in progress.

APPENDIX

A. Computation of G(s)

v∗(s)− v(s) is given by

v∗(s)− v(s)

= v∗(s)−
(

η(s)

YrLC(s)

)
id(s)

−
(
η(s) (1 + rYL(s))Yinv(s)

YrLC(s)

)
(vinv(s)− v(s)) , (16)

where the final expression follows from

r + η(s)Y −1rLC(s) = Y −1rLC(s) (1 + rYL(s)) , (17)

and YL(s) := z−1L (s). (16) accounts for the first and third
rows of G(s) in (7).

The inverter voltage can be written in terms of id(s) and
(vinv(s)− v(s)) as given below:

vinv(s)

=
Wd(s)η(s)

YrLC(s)
id(s) +(

1 +
η(s) (1 + rYL(s))Yinv(s)

YrLC(s)

)
(vinv(s)− v(s)) ,(18)

The result in (18) corresponds to the second row of (7).
Along similar lines, the inverter output current can be

expressed as

i(s)

= −
(
Wd(s)η(s)Yc(s)

YrLC(s)

)
id(s)

+

(
η(s)YL(s)Yinv(s)

YrLC(s)

)
(vinv(s)− v(s)) , (19)

where we utilized the fact that

1− rYc(s)η(s)−
η2(s)Yc(s)

YrLC(s)
=
η(s)YL(s)

YrLC(s)
. (20)

The fourth row of G(s) is characterized using (19) and the
last row is given by (1).
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