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Abstract—Synchronous machines have traditionally acted as
the foundation of large-scale electrical infrastructures and their
physical properties have formed the cornerstone of system op-
erations. However, with the increased integration of distributed
renewable resources and energy-storage technologies, there is
a need to systematically acknowledge the dynamics of power-
electronics inverters—the primary energy-conversion interface in
such systems—in all aspects of modeling, analysis, and control of
the bulk power network. In this paper, we assess the properties
of coupled machine-inverter systems by studying an elementary
system comprised of a synchronous generator, three-phase in-
verter, and a load. The inverter model is formulated such that its
power rating can be scaled continuously across power levels while
preserving its closed-loop response. Accordingly, the properties of
the machine-inverter system can be assessed for varying ratios of
machine-to-inverter power ratings. After linearizing the model
and assessing its eigenvalues, we show that system stability is
highly dependent on the inverter current controller and machine
exciter, thus uncovering a key concern with mixed machine-
inverter systems and motivating the need for next-generation
grid-stabilizing inverter controls.

I. INTRODUCTION

Renewable portfolio standards, market trends, and in-
creased consumer awareness have resulted in a pronounced
increase in the integration of distributed renewable resources of
energy in the power system. In contrast to conventional fossil-
fuel-driven generation which utilizes synchronous machines
for energy conversion, renewable energy sources are funda-
mentally different in that they are typically coupled to the grid
through power-electronics interfaces [1]. This trend broadly
implies that next-generation power networks will be domi-
nated by energy-conversion interfaces that offer limited-to-no
mechanical inertia—a physical system property that currently
underpins many operations and control tasks. Recognizing this
generational change, in this paper, we propose a framework
to characterize the small-signal stability of mixed machine-
inverter systems.

We investigate the small-signal stability of the system in
Fig. 1 which consists of a synchronous machine and inverter
serving a load. It should be noted that although practical
systems contain large collections of interconnected machines
grouped into balancing areas, we focus on this elemental
system to glean insights that would otherwise be imperceptible
were a more complex system investigated. With that being
said, the main contribution of our work is that it addresses
a critical challenge in modeling inverter-machine interactions:
the large disparity in ratings between inverters and machines.

voltage
p
o
w
er

Scalable Inverter Model

governor

voltage
control

load

prime
mover

exciter

pκ

vκ

1

1

310

210

480V

35kV

310

1

mioi

gv

]∗q∗p[

]∗q∗p[

Fig. 1: Model of a single-machine single-inverter system,
where the power and voltage ratings of the inverter are scal-
able. This model is an abstraction of low-inertia systems and
is intended to assess possibly unforeseen dynamic interactions
between machines and inverters as more inverters are installed
in networks.

For instance, synchronous machines in a typical power plant
are commonly rated for 100’s of MVA while inverters are
generally no larger than 100’s of KVA. To address this
challenge, we propose a dynamical scalable inverter model
whose power and terminal-voltage ratings can be scaled to
values representative in bulk power systems. We outline a
procedure to do so that is grounded in systematically scaling
model parameters, filter elements, and controller gains (with
voltage- and power-scaling parameters κv and κp (see Fig. 1)).
Increasing the values of these scaling parameters can capture
one of two scenarios: i) connecting many small inverters
in parallel to obtain a larger aggregate, or ii) designing an
inverter with a higher power level from some known nominal
specifications. The end result in either case is that we obtain an
aggregated inverter model with power or voltage ratings that
can be scaled to match (or even exceed) those of conventional
synchronous machines. Tuning the values of these scaling
parameters, we will study the combined machine-inverter
dynamic model at varying levels of inverter penetration (i.e.,
varying levels inverter power ratings). To assess stability, we
linearize the differential-algebraic-equation model and analyze
the eigenvalues of the resulting linear model for scenarios such
as: changing the mechanical inertia of the machine, disabling
different control loops in the inverter, and changing controller
gains. Note that we focus on prototypical inverter control
strategies, which we call grid-following controls, to assess
potential issues with business-as-usual approaches. Advanced
inverter control strategies are beyond the scope of this paper.
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Prior work that relates to this effort includes classical re-
sults on the stability of interconnected synchronous generators
in the bulk system [2]. Given that power electronics energy-
conversion interfaces have only recently been deployed in
significant numbers and capacities approaching representative
values in the bulk system, inverter dynamics have hitherto not
been systematically acknowledged. There is a growing body of
literature that has investigated the dynamics of (predominantly)
inverter-based islanded microgrids [3]–[6]. With regard to the
setting we study, i.e., grid-connected inverter systems, destabi-
lizing interactions between inverters with conventional phase-
locked-loops (PLL) have been recently uncovered and analyzed
in [7]; small-signal stability of mixed inverter-machine micro-
grids as a function of inverter control gains has been studied
in [8], and small-signal stability of a wind turbine-machine
system has been investigated in [9]. While these works have
characterized the dynamics of heterogeneous machine-inverter
systems to some extent, the effect of inverter penetration
level on stability has not been explicitly addressed. Finally,
there are several large-scale system modeling studies that
assess the impact of variable renewable generation on system
dynamics [10]. However, inverters in such studies are typically
modeled as real-power injections and the dynamical models
that underly inverter operation are disregarded for analytical
and computational convenience.

The remainder of this paper is organized as follows. The
inverter and machine models are outlined in Section II, small-
signal stability analysis is performed in Section III, and con-
cluding statements and directions for future work are outlined
in Section IV.

II. SINGLE-MACHINE SCALABLE-INVERTER MODEL

In this section, we first describe the inverter and machine
dynamical models in their local dq reference frames. Subse-
quently, we discuss the network model and how these three
models are coupled.

A. Machine Model

We consider a prototypical steam-driven generator that
consists of a synchronous machine, exciter, governor, and
prime mover. Given that models for such systems are well es-
tablished, we only provide a brief overview and refer interested
readers to [2] for details. The model we consider consists of a
frequency loop that captures the rotor dynamics and a voltage
loop that encapsulates the electromagnetics. (See Fig. 2.) The
frequency dynamics include those of the governor and turbine
and they dictate the evolution of the generator rotor angle.
The terminal voltage is governed by the voltage regulator and
exciter circuitry. Without loss of generality, we assume the
exciter is of type AC4A [2] which utilizes a first-order lead-
lag compensator. Stator- and damper-winding dynamics as well
as power system stabilizer dynamics have been neglected in
addition to nonlinearitites such as magnetic-saturation effects,
voltage limiters, and frequency limiters.

The dynamics of the frequency- and voltage-control loops
illustrated in Fig. 2 and discussed above can be succinctly
captured in the following state-space model

ẋm = fm(xm, um), (1)
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Fig. 2: Block diagram of a synchronous machine equipped
with a prime mover, governor, and voltage excitation system.

with the following states and inputs:

xm =[δg, ω, Pg, Pgt, Pm, vc, vfd, λfd]
⊤, (2)

um =[Pagc, v
∗, idqm ]⊤. (3)

Above, δg is the rotor angle (that establishes the dq reference
frame), ω is the frequency, Pg is the governor output, Pgt is
an internal steam turbine state, Pm is the mechanical power
on the rotor, vc is the voltage controller output, vfd is the field
voltage, and λfd is the field flux linkage. The inputs consist of
the AGC reference signal, Pagc, the terminal voltage command
v∗, and the machine terminal currents idqm = [idm, i

q
m]

⊤.

Subsequently, we denote the machine power rating as P̄m.
Furthermore, all pertinent model parameters, inputs, and states
are per-unitized using the machine power and voltage ratings
as base values [2].

B. Scalable Inverter Model

The model adopted for the three-phase inverter is shown
in Fig. 3. Physical components are the output LCL filter and
the three-leg voltage source inverter. Closed-loop controllers
include a PLL, current controller, and power controller. The
PLL synchronizes to the measured voltage vo, the power con-
troller produces current references for the current controller,
and the current controller yields the switch terminal voltage vi.
From here forward, we utilize an averaged model where the
PWM and switching dynamics are neglected and we assume
that the voltage commands generated by the current controller
appear at the switch terminals [11]. This control structure is
well-established [4]; and building on it, we introduce the power
and voltage scaling factors, denoted by κp and κv, respectively,
to yield a model that can accommodate tunable voltage and
power ratings. Before delving into the details of the scaled
inverter, we first briefly overview the dynamical model for the
unscaled inverter.

The dynamics of the LCL filter and control loops for an
unscaled inverter (i.e., with the choice κv = κp = 1) can be
written compactly as:

ẋi = fi(xi, ui), (4)
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Fig. 3: Scalable three-phase inverter model with grid-following
control. The power and voltage scaling factors are κp and κv

respectively.

where the dynamical states and inputs are given by

xi =[idql , idqo , vdqo , γdq, pavg, qavg, φpq, vPLL, φPLL, δi]
⊤, (5)

ui =[p∗, q∗, vdqg ]⊤. (6)

Above, idql = [idl , i
q
l ]

⊤ is the filter current, idqo = [ido , i
q
o]

⊤

is the terminal current, vdqo = [vdo , v
q
o ]

⊤ is the filter voltage,
γdq = [γd, γq]⊤ captures the states for the current PI con-
troller, pavg and qavg are the low-pass-filtered measurements of
the inverter real and reactive power, φpq = [φp, φq]

⊤ captures
the states for the real and reactive power PI controllers, vPLL

and φPLL are the filtered d-axis voltage measurement and the
PI compensator state for the PLL, respectively, and δi is the
angle for the dq transformation. The input signals p∗ and
q∗ are the unscaled real and reactive power set points, and
vdqg = [vdg , v

q
g ]

⊤ is the unscaled grid voltage at the point of
interconnection.

The dynamics in (4) are specified in dq coordinates with
the PLL defining the inverter reference frame angle, δi. We
provide a brief overview of the dynamics next. The PLL
dynamics are given by

v̇PLL =ωc,PLL(v
d
o − vPLL), (7)

φ̇PLL =− vPLL, (8)

δ̇i =ωnom − kpPLLvPLL + kiPLLφPLL := ωPLL, (9)

where ωc,PLL is the cutoff frequency of the filter for the vdo
measurement, ωnom is the nominal ac system frequency, and
the proportional-integral control gains are given by kpPLL and
kiPLL.

The real and reactive power delivered by the inverter are
given by p = 3/2(vdo i

d
o + vqo i

q
o) and q = 3/2(vqoi

d
o − vdo i

q
o),

respectively. The power controller dynamics are

ṡavg = ωc

(

[p, q]⊤ − savg
)

, φ̇pq = [p∗, q∗]⊤ − savg, (10)

and the current commands that are derived from it are given
by

idq∗l = kpPQφ̇pq + kiPQφpq, (11)

where savg = [pavg, qavg]
⊤, idq∗l = [id∗l , iq∗l ]⊤, and the gains

of the power controller are kpPQ and kiPQ. Lastly, the current
controller is specified by

γ̇dq = idq∗l − idql , (12)

and its output which yields the switch terminal voltage is

vdq∗i = kpi γ̇
dq + kiiγ

dq +

[

0 −1
1 0

]

ωPLLLfi
dq
l , (13)

where kpi and kii are the compensator gains and Lf is the
inductance of the first branch of the LCL filter (see Fig. 3).

Finally, we assume that vdqi = vdq∗i . The LCL filter dynamics
can be described using established methods [11] and further
details of the controllers described above are in [4].

Next, we describe how the filter parameters and control
gains of the unscaled inverter can be systematically tuned to
obtain an inverter model for a desired terminal voltage and
power level while preserving its closed-loop response (we
clarify what this means shortly). Define the scaled power and
voltage ratings P̄i := κpPi and V̄i := κvVi, respectively, where
Pi and Vi are the ratings for the original unscaled inverter. To
obtain the scalable model with ratings P̄i and V̄i, we modify
the LCL filter parameters and control gains as follows (also
illustrated in Fig. 3):

• LCL filter:
κ2
v

κp
Lf ,

κ2
v

κp
Rf ,

κ2
v

κp
Lo,

κ2
v

κp
Ro,

κp

κ2
v
C,

κ2
v

κp
Rc.

• Power controller: kpPQ/κv, k
i
PQ/κv.

• Current controller:
κ2
v

κp
kpi ,

κ2
v

κp
kii .

• PLL: kpPLL/κv, k
i
PLL/κv.

Let us denote the scaled inverter states as xs
i , and suppose

they are ordered the same way as in (5). With the LCL filter
elements and controller parameters scaled as discussed above,
the dynamics of the scaled inverter can be described in the
form

ẋs
i = f s

i (x
s
i , u

s
i ), (14)

where the input us
i = [κpp

∗, κpq
∗, κvv

dq
g ]⊤, and f s

i (·, ·) has
the same structure as fi(·, ·). Algebraic manipulations of the
inverter dynamical model described above reveal that

xs
i (t) = diag(κ)xi(t), ∀t ≥ t0, (15)

where κ := [
κp

κv
,
κp

κv
, κv,

κp

κv
, κp, κp, κp, κv, κv, 1]

⊤ provided
the initial conditions for the unscaled and scaled inverters at
time t0 are picked such that xs

i (t0) = diag(κ)xi(t0). From the
definition of the states in (5) and the property in (15), we see
that in the scaled states xs

i , the power related states are scaled
by the factor of κp, the voltage related states are scaled by the
factor of κv, the current related states are scaled by the factor
of κp/κv, and the angle δi is not scaled. Lastly, all inverter
model parameters, inputs, and states are per-unitized. The base
values are the same as those used in the machine model.

C. Network Model

The inverter and machine models above are each repre-
sented in their respective coordinate frames. To collectively
analyze these subsystems, we perform a coordinate trans-
formation that places the machine terminal variables in the
inverter reference frame as determined by the PLL angle, δi.
Suppose quantities superscripted with d, q are in the inverter
dq reference frame, and those superscripted by D,Q are in
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TABLE I: Parameters of the machine model under considera-
tion. All values are in per unit unless specified otherwise.

H = 2.9 s D = 1 r̂ = 0.05
τg = 0.2 s Fhp = 0.3 Trh = 7 s
Tch = 0.3 s ka = 0.0745 Ta = 0.04 s
Tb = 12 s Tc = 1 s Rfd = 0.0006
Ra = 0.003 La,fd = 1.66 Lfd,fd = 1.825
Ld = 1.81 Lq = 1.76 Pagc = 0.9 pu

the machine dq reference frame. Accordingly, the following
transformation
[

xd
m

xq
m

]

=

[

cos(ωnom(δg − δi)) − sin(ωnom(δg − δi))
sin(ωnom(δg − δi)) cos(ωnom(δg − δi))

] [

xD
m

xQ
m

]

,

(16)

converts variables from the machine to inverter frame, where
δg − δi is the angle difference between the machine rotor and
inverter PLL.

We suppose that the network variables are described as
phasor quantities in the inverter frame. From Kirchhoff’s laws,
we have:

Vg = z(Im + Ii), (17)

where z is the complex load impedance, Im = idm + jiqm and
Ii = ido + jiqo are the terminal machine and inverter currents,
respectively, and Vg = vdg + jvqg is the machine terminal
voltage. Combining (16) and (17) the network equations can
be captured by the general algebraic model:

0 = g(idqm , idqo , vdqg , δg − δi). (18)

Having established the coupled inverter-machine dynamical
model, we assess its small-signal stability as we vary the
inverter penetration level, which we define as the ratio

P̄i

P̄i + P̄m
, (19)

where P̄i = κpPi, with Pi being the power rating of the
unscaled inverter model, and κp the power-scaling parameter.

III. SMALL-SIGNAL STABILITY ANALYSIS

In this section, we examine a linearized version of the
coupled machine-inverter system described by the models in
Section II. After investigating instabilities in the full-order
system model, we uncover the root cause of the observed
instabilities. Towards that end, we bypass and/or modify var-
ious subsystems within the inverter and machine models to
assess the impact of each. Ultimately, we will show that for
the particular models under consideration, interactions between
the machine voltage exciter and inverter current controller lead
to small-signal instability at high levels of inverter penetration.

A. Linearization

The dynamical models (1), (14), and the algebraic con-
straint given by (18) collectively yield a differential algebraic
equation network model. Utilizing the coupling among idqm ,
and λfd (see Fig. 2), we solve for vdqg and idqm from (18) in

TABLE II: Parameters of the inverter model utilized in the
case-study.

Lf = 1mH Rf = 0.7Ω Lo = 0.2mH
Ro = 0.12Ω C = 24µF Rc = 0.02Ω

kp

PQ
= 0.01 (V)−1 ki

PQ = 0.1 (V · s)−1 kp

i
= 16.4V/A

ki
i = 30.4V/(A · s) kp

PLL
= 0.25 rad/V ki

PLL = 2 rad/(V · s)

terms of the states λfd, idqo , δg − δi. Then we can we obtain
an augmented dynamical system from (1) and (14):

ẋ = f(x, u), (20)

where x collects all states in xs
i and xm, except replac-

ing δg and δi with their difference δg − δi, and u =
[Pagc, v

∗, κpp
∗, κpq

∗]⊤ collects all the exogenous inputs to the
system. Linearizing around the equilibrium point (x∗, u∗), we
obtain

∆ẋ = A∆x+B∆u, (21)

where A = ∂f
∂x |(x∗,u∗) and B = ∂f

∂u |(x∗,u∗).

B. Case Study Description

The machine under consideration has a power rating of
P̄m = 555MVA, line-to-line voltage rating of 24 kV, and
a nominal frequency of ωnom = 2π × 60 rad/s. (These
serve as the base values.) Some relevant machine parameter
values and inputs are listed in Table I (these are adopted
from [2]). The load impedance is calculated such that it
consumes 500 MW and 50 MVAR at the nominal voltage. The
parameters for the unscaled inverter are given in Table II
and correspond to a custom-built hardware prototype at the
National Renewable Energy Laboratory with power and line-
to-neutral voltage ratings of Pi = 1 kW and Vi = 120VLN,
respectively. The inverter voltage scaling factor is selected as
κv = 24× 103/(

√
3 120) so that the inverter terminal voltage

is compatible with the rated machine voltage. For the ensuing
analysis, we vary the inverter real power reference, κpp

∗, via
κp such that it is equal to the inverter power rating, P̄i, when
the rating is less 250 MW (half of the load) and κpp

∗ remains
fixed at 250 MW when P̄i > 250MW.

C. Subsystem and Root-cause Analysis

In this section, we will either modify or bypass each
pertinent subsystem in the machine-inverter system and study
the effect on small-signal system stability (by computing the
eigenvalues of the matrix A (21)). We begin with a nominal
base case.

1) Nominal Case: For the nominal parameters given above,
we increase the inverter power scaling factor, κp, in small
increments, and compute the equilibrium point from (20) and
eigenvalues of the system matrix A in (21). In Fig. 4, we
plot the real part of the eigenvalue with the largest real
part, denoted as max(Re(λ)), as a function of the inverter
penetration level (19), where λ is the vector of complex
eigenvalues of the matrix A. If max(Re(λ)) > 0, the small-
signal model is unstable. As shown in Fig. 4, small-signal
stability is maintained for inverter penetration levels below
approximately 50%.
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Fig. 4: Nominal case: Small-signal stability is ensured for
penetration levels approaching 50%.
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Fig. 5: Bypassing the machine AVR and exciter circuit
significantly improves stability margins.
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small-signal stability.
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Fig. 7: Bypassing the PLL (assuming δi = δm) guarantees
stability for penetration levels greater than 80%.
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Fig. 9: Eigenvalues with the inverter power controller by-
passed.

2) Machine Exciter: The machine terminal voltage is the
signal that the inverter synchronizes to as it injects a controlled
current. Accordingly, interactions between automatic voltage
regulator (AVR) and associated exciter circuitry within the
machine and the inverter controllers may be critical for system
stability. To determine whether this is the case, we bypass
the AVR and exciter circuit dynamics in the machine model
and fix the machine voltage amplitude to its the nominal
value. Figure 5 plots max(Re(λ)) as a function of the inverter
penetration level (19) for this setting, and we see that small-
signal stability of the machine-inverter system is preserved
across the full range of inverter penetration levels considered.
Remarkably, stability is retained even with an inverter rating
10 times larger than the machine rating. This finding indicates
that the presence of the AC4A-type AVR considered here has a
major impact on the stability of machine-inverter systems and
to the authors’ knowledge is not reported in prior literature.

3) Current Controller: Next, we investigate impacts of the
inverter current control gains on system stability. Here, the full-
order model is considered and we modify the current control

gains, kpi and kii , from the baseline values in Table II. In
particular, Fig. 6 illustrates results for the case where kpi and
kii are scaled by a factor of 5 and 1/5 from the nominal value.
As shown, small-signal instability is encountered at a smaller
penetration level of approximately 30% when the gains are
decreased by a factor of 1/5, and an increased penetration level
of 65% when the gains are increased by a factor of 5. Hence,
more aggressive current control gains increase the range of
stable penetration levels.

4) PLL: The PLL is responsible for synchronizing the in-
verter with the terminal ac voltage and its performance impacts
downstream inverter controllers. Therefore, it is plausible that
it would play a major role in system stability. To explore this,
we bypass the PLL by assuming that the inverter has perfect
knowledge of the rotor angle (i.e., δi = δg). Although this
operating condition is not physically possible, this assumption
is a simple way to investigate the impact of the PLL on
small-signal stability. As shown in Fig. 7, the system with no
PLL and ideal angle-tracking at the inverter has a significantly
enlarged region of stability.
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Fig. 10: Time domain response of the original nonlinear model.
The blue solid line represents a stable case where inverter
penetration level of 44%; the red dashed line represents an
unstable case where inverter penetration level of 55%.

5) Machine frequency loop: Given that the inertia of the
rotor system has a direct impact on system frequency dynam-
ics, the impact of varying levels of system inertia on power-
system dynamic performance has recently attracted significant
attention [12]. With this in mind, in Fig. 8 we plot max(Re(λ))
as a function of the inverter penetration level (19) when the
inertia of the machine is scaled by factors of 1/10 and 100.
While the stability margins are improved at higher inertia
levels, surprisingly, these large variations in rotor inertia do
not yield correspondingly large impacts on small-signal system
stability.

6) Power controller: Lastly, we disable the inverter power

controller by fixing the current reference values, idq∗l , that are
provided to the inverter inner current controller. As demon-
strated in Fig. 9, we observe that the eigenvalues are similar
to the base case and, accordingly, we conclude that the power
controller has minimal impact on system stability.

D. Validation of Small-signal Model

In an attempt to validate the small-signal model, we con-
sider two time-domain models where in each case max(Re(λ))
is either positive or negative, and in both cases the system
is given a small perturbation in the form of a 5% load step
at t = 0.1 s. Given that we are particularly interested in
validating penetration levels near the instability boundary, we
focus our time-domain models at operating conditions near this
transition point. Starting at an equilibrium point and following
the aforementioned load step, the responses in Fig. 10 illustrate
the machine terminal voltage response at stable and unstable
penetration levels of 44% and 55%, respectively, from Fig. 4.
As confirmed in the time-domain plots, the nonlinear dynam-
ical model is indeed stable and unstable when max(Re(λ)) is
negative and positive, respectively, thus validating the small-
signal model.

IV. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the stability of a coupled
machine-inverter system as a function of the ratio of inverter-
to-machine power ratings. To enable this, we obtained a
scalable inverter model where the control gains and physical

parameters of a baseline inverter model are scaled as a function
of voltage and power ratings. The scalable inverter model
allowed us to formulate a system model with a tunable inverter
rating level. After linearizing and analyzing the eigenvalues of
the system, it was found that the AVR and excitation system
of the machine exhibits a destabilizing interaction with the in-
verter current controllers. Furthermore, the gains of the inverter
current controllers have a large impact on the stability of the
machine-inverter system. We believe the analysis reported in
this paper serves as a first step to charactering the stability
of a power system with significant inverter-based generation.
Future work includes extending this analytical framework to
investigate multi-inverter multi-machine systems.
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