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Abstract—This work presents a unified method for dynamic 
modeling and stability analysis of microgrid power systems. 
Using the automated state model generation algorithm, a state-
space model of the microgrid power system is derived. The 
model may be used to conduct time-domain simulations and 
analyze system response to large transients. Additionally, 
eigenvalues of the system may be analyzed with respect to 
inverter control gains to assess small-signal stability. The 
proposed methodology is verified for a large-signal transient 
study and small-signal stability analysis using dual and single-
inverter microgrid systems, respectively. The presented method 
is general and may be applied to balanced three-phase circuit 
topologies and inverter controllers without the need to derive 
circuit state equations. 

I. INTRODUCTION 
A microgrid is a system composed of distributed energy 

sources located near loads of interest and capable of islanding 
from the main grid to provide uninterruptible power to the 
local loads [1]. A wide variety of energy sources including gas 
turbines, photovoltaics, wind turbines, and batteries may be 
integrated into the system. The ac energy sources in the 
microgrid are rectified and connected to dc buses. A voltage 
source inverter interfaces each dc bus with the ac microgrid 
bus [2], as shown in Fig. 1. Microgrids are typically 
implemented in mission-critical systems, and consequently 
their stability assessment and large-signal transient analysis is 
of particular interest; e.g., to study if the system is stable 
during large transient events such as the transition from grid-
connected to islanded. Additionally, it is useful to perform 
small-signal stability analysis with respect to the inverter 
control parameters to determine the relationship between 
control settings and stability during small disturbances. 
Therefore, there has been growing interest in computer aided 
dynamic characterization of microgrid power systems for 
large signal transient study, stability analysis, and controller 
design [3]-[5]. 

Power circuit simulators generally fall into two categories: 
nodal-variable and state-variable based languages [6]-[7]. The 
former category uses circuit elements and solves nodal 

equations using numerical difference equations. The latter 
uses differential state equations established by the analyst 
prior to implementation. Nodal-based microgrid models using 
programs similar to EMTP allow for simulation of large-
transients [8] but lack flexibility for small-signal stability 
analysis of the control system. Existing state-space models 
generally require a separate formulation for the power source, 
network, and loads [4]. Furthermore they are only valid for 
small disturbances. 

 
Figure 1.  Power electronics interface between energy sources and  

microgrid bus. 

The automated state model generation (ASMG) algorithm 
[7] combines the benefits of both nodal-variable and state-
variable based approaches. This algorithm has been 
accelerated and improved to enhance ease of implementation 
and computational performance [9]. In this work, the 
microgrid power system is described by the pertinent branch 
parameters and circuit topology. The composite system state 
equations are established systematically, and the resulting 
state equations are used for large and small-signal dynamic 
characterizations. The proposed methodology is systematic 
and therefore, automatable. The state-space model may be 
used to derive the linearized state equations so that the 
eigenvalues may be analyzed at the system level [10] with 
respect to the inverter control parameters. This analysis will 
provide insight into the relationship between inverter control 
settings and system stability. 
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II. MICROGRID POWER SYSTEM  
The Consortium for Electric Reliability Technology 

Solutions (CERTS) microgrid and its associated inverter 
control system are considered, although the presented methods 
can generally be used for any type of inverter controller. Key 
features of the system are that each inverter operates 
autonomously without the need for communication between 
other system microsources [1], [3], [11], and the inverter 
system, as shown in Fig. 2, uses local measurements in 
addition to power and voltage commands to regulate its 
outputs. It will regulate either the power injected into the 
microgrid bus or the measured voltage during grid-connected 
and islanded configurations, respectively [5], [12].  

 
Figure 2.  Inverter model and closed-loop control 

A block diagram model of the controller is shown in Fig. 
3 and the P, Q, and V calculations are summarized in (1), 
where Vqd0 and Iqd0 are calculated by transforming the 
measured quantities, Vabc and Iabc, in Figure 2 to the 
synchronous frame. Since each inverter is supplied by energy 
sources capable of satisfying the base load as well as energy 
storage able to supply rapid increases in power output [2], 
[12], the dynamics of the dc bus may be neglected for the 
purpose of modeling the inverter voltage output. The 
synchronous frequency is ω0 and the user-defined commands 
are the rms voltage V* and power P*. Minimum and 
maximum power capabilities, Pmin and Pmax, are also defined 
such that the physical limits of the microsource are enforced. 
Since the inverter switching frequency is approximately two 
orders of magnitude greater than the ac line frequency, the 
use of an average model neglecting switching ripple can be 
justified [13]. The outputs |Einv| and θv are used to control the 
inverter gate signals to satisfy (2).  
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Figure 3.  Inverter control block-diagram  model 
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III. COMPOSITE SYSTEM STATE MODEL DEVELOPMENT 

A. Large-signal nonlinear system development 
The microgrid is represented as a collection of n nodes and 

b braches using a directed graph. Each branch is a variation of 
the elementary model shown in Fig. 4. By setting appropriate 
parameters to zero, a wide variety of commonly used power 
system circuit elements can be constructed. Using the 
additional capability that the voltage and current sources, ei 
and ji, can be functions of time and other variables, the voltage 
source inverter average model presented in section II may be 
represented by this elementary branch. The control block 
diagram in Fig. 3 is implemented using Simulink. 

 
Figure 4.  Elementary branch model 

Defining Pi = 1/Ci, the parameters of each branch ri, Li, 
and Pi constitute b b×  matrices Rbr, Lbr, and Pbr, 
respectively. The sources ei and ji form b dimensional vectors 
ebr and jbr, respectively. The off-diagonal elements in the 
inductance matrices represent mutual coupling between 
branches and may be utilized to model three-phase 
transformers commonly used in microgrid power systems. The 
interconnected branches form the microgrid network whose 
structure is described by the b n×  node-incidence matrix Aa. 
Each column corresponding to a branch will have exactly two 
non-zero entries, with one equal to +1, and the other to -1. A 
+1 at the (i, j) entry of Aa indicates the connection of the 
positive terminal of the jth branch to the ith node. The -1 entry 
corresponds to the negative terminal connection. After row-
operations, Aa may be expressed as (3) [7]. 
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A state-space model of the microgrid may be derived 
using the four matrices Aa, Rbr, Lbr, and Pbr. Using p to 
denote the differentiation operator, the state-space model of 
the system with no current sources is expressed using (4) and 
(5) [7]. Voltage sources, ebr, serve as inputs to the system and 
the currents ix and qc are the state variables, where / p=c cq i  
and ic are the capacitor currents. The presented state-space 
model may be written succinctly as px Ax Βu= +  and 
y Cx Du= + . 
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B. Linearization and subsequent small-signal system 
development 
The system state equations expressed in the abc frame in 

(4) and (5) are time-varying in steady state. Therefore, Park’s 
transformation is used to transform them to qd0 variables so 
that the equilibrium values are steady-state quantities. Park’s 
transformation from abc to qd0 quantities is defined in (6).  
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By applying Park’s transformation to the previous state-space 
model with matrix coefficients A, B, C, and D, the state-
space model from (4) and (5) may be rewritten as shown in 
(7) and (8). Using properties of Park’s transformation as 
summarized in [13], the matrix coefficients in (7) and (8) are 
time-invariant and the qd0 state-space model has constant 
steady-state values. 
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The closed-loop system dynamics are extracted from Fig. 3, 
(1), (7), and (8). Since the Q, V, and P calculations shown in 

(1) are non-linear, the state equations must be linearized in 
order to extract a small-signal model at an equilibrium point. 

IV. CASE STUDIES 

A. Large-signal time-domain transients 
The microgrid system shown in Fig. 5, with parameters 

summarized in the appendix, has been verified 
experimentally in [14]. Here, this physical system is used to 
verify the large signal transient model. The loads, rated to 
consume a total of 18 kW, are purely resistive and connected 
in floating-star configurations. The grid system is modeled as 
an infinite bus with an equivalent impedance. 
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Figure 5.  Dual inverter microgrid testbed 

Initially, the system is grid-connected and both 
microsources are regulating their power output to 0.4 pu on a 
15 kW base. At t = 0.25 sec, the system is islanded and the 
two microsources increase their power output to 
accommodate the total load. Simulation results, shown in Fig. 
6, closely match measured results from [14]. These results 
verify the accuracy of the modeling technique and show that 
this particular system is stable during islanding. 
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Figure 6.  Transient response due to system islanding. Power, voltage, and 

currents are in per unit. 

B. Small-signal stability analysis 
The system shown in Fig. 7 is used to illustrate the 

relationship between the system eigenvalues and controller 
gains. The state variables are the inverter currents, load 
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currents, and the controller state variables. The nine system 
eigenvalues, one for each state-variable, are analyzed under 
varying control gains while the system is grid connected and 
the microsource power output is regulated to 6 kW. As each 
of the control gains Mp, Mq, and Ki is increased, a Hopf 
bifurcation is encountered and the system becomes unstable. 
Small-signal system stability is maintained for all values of 
proportional gain Kp. Table 1 summarizes the minimum gain 
threshold that produced unstable eigenvalues in the right half 
of the complex plane. The results are expressed in terms of 
the typically used base gains, Ki(0) = 3120 10× , Mq(0) = 0.05 , 
and Mp(0) = 1.25π . 

 
Figure 7.  Single-inverter system for stability analysis 

TABLE I.  GAIN SETTINGS AT INSTABILITY 

Parameter Threshold gain when Re(λ) > 0 
Mq 21.25Mq(0) 
Mp 151Mp(0) 
Ki 4.7Ki(0) 

The root-locus plot corresponding to the control parameter 
Mq is shown in Fig. 8.  For clarity, the root-locus plot 
contains only the eigenvalues corresponding to the jω axis 
crossing. The dynamic power responses confirm the findings 
summarized in the root-locus plots by showing an 
exponentially growing output for the gain setting 
corresponding to right-hand plane eigenvalues as summarized 
in Table 1. For a slightly smaller gain, the eigenvalues are in 
the left-hand plane, and correspondingly, the response decays 
to a bounded output.  
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Figure 8.  Root-locus plot with respect to the gain setting Mq. 
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Figure 9.  Stable and unstable dynamic responses. 

V. CONCLUSION 
A unified method for analyzing the large transient 

response and small-signal stability of microgrid power 
systems is presented. Using this method, a state-space model 
is derived using the node-incidence matrix and circuit 
parameters. The state-space model may be utilized to 
simulate the time-domain system response during large 
transients such as islanding. After performing transformations 
from abc to qd0 variables and linearizing the state equations, 
the eigenvalues may be analyzed with respect to the inverter 
control gains. This approach is generalized for balanced 3-
phase circuit topologies so that the user is not required to 
explicitly derive the system equations. 

APPENDIX 
Microgrid parameters: r1 = 18.9 mΩ, L1 = 49.4 μH , r2 = 4.20 
mΩ , L2 = 59.1 μH,    r3 = 47.4 mΩ, L3 = 66.5 μH, r4 = 15.8 
mΩ, L4 = 22.2 μH,   Linv =  5 mH, rinv = 12.8 mΩ, RloadA = 9.6 
Ω, RloadB = 4.8 Ω, rTA(480V) = 30.7mΩ, LTA(480V) = 407.4 μH, 
rTA(208V) = 1.9 mΩ, LTA(208V) = 25.5 μH, rTB(480V) = 51.2 mΩ, 
LTB(480V) = 679.1 μH, rTB(208V) = 3.2 mΩ, LTB(208V) = 42.4 μH 
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