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Abstract—In this paper, we introduce a new method of model-
ing voltage-controlled dual active bridge converters as equivalent
circuits. What makes the proposed model unique is that the entire
closed-loop system (converter and control loop) are represented
together in one equivalent circuit. Since the full system can be
recast as a circuit, this allows for deeper insights on how the
closed-loop system performs and for the direct application of
circuit analysis techniques. In particular, we reveal how classical
control notions can be understood as circuit laws.

Index Terms—circuit analysis, control systems, converter and
control model, dual-active-bridge converters

I. INTRODUCTION

Dual active bridge (DAB) converters are widely used in
applications where isolation and high voltage conversion ratios
are required [1]. DAB use-cases run the gamut from battery
chargers for hybrid electric vehicles [2], to photovoltaic sys-
tems [3], and medium-voltage grid-connected converters [4].
It is well-known that switch-cycle-averaged converter models
are essential for analysis, control design, and reduced com-
putational complexity. Along these lines, we propose a new
modeling approach where both the averaged DAB converter
and its closed-loop voltage controller are represented together
as a unified circuit equivalent. After recasting the averaged
system as a circuit, it is shown that its closed-loop character-
istics naturally emerge from Kirchhoff’s laws. Not only does
this circuit-based framework reveal a link between circuit and
control laws, but it also gives deeper intuition on how the
closed-loop DAB system operates.

Impedance-based methods have emerged as a popular ap-
proach to analyze the small-signal dynamics of converter
systems [5]–[7]. With such a framework, stability can be
analyzed in terms of the effective output impedance of a given
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converter [8] where the output port is modeled as either a
Norton or Thevenin equivalent. Although this provides a valu-
able linkage between the circuit concept of impedance with
stability, the converter and its various control loops are not
explicitly represented as circuits. In other words, impedance-
based approaches do not explicitly reveal the circuit equivalent
that captures the feedback and feedforward action.

Generally speaking, classical frequency domain and state-
space models provide little physical intuition beyond what can
be gleaned from Bode and root-locus plots. To bypass these
limitations, a new method for modeling voltage-controlled
converters as circuits is established. By casting the closed-loop
converter system as a circuit, physical intuition is revealed on
how the compensator interacts with the output load, feedback
and feedforward sensing paths, and reference signal. After
defining the equivalent circuit, Kirchhoff’s laws are applied
to distill it into a canonical circuit which captures key input-
output relations. Finally, we show how superposition along
with the voltage and current divider equations directly give us
the closed-loop system model without any tedious algebra.
Curiously, it emerges that the voltage and current divider
equations have a direct mapping to the well-known sensitivity
and complementary sensitivity functions that are classically
used to analyze closed-loop systems in both the controls [9]
and power electronics [10] contexts.

The paper is structured as follows: In Section II, we
define notation and modeling basics. We derive the equivalent
circuit model in Section III. Section IV establishes a one-to-
one correspondence between the circuit and classical control
frameworks. Finally, concluding statements are in V.

II. MODELING PRELIMINARIES

Consider the DAB circuit in Fig. 1(a) with dc input voltage,
vi, a 1 : n transformer which links the two bridges, transformer
leakage inductance L, and output voltage v. The secondary
active bridge delivers dc current io into the dc output. The
terminals of the output capacitance C, define the converter
load terminals. We model the external load as a nominal
resistance R`, and a disturbance current source i`, which
captures all other load uncertainties.978-1-7281-1842-0/19/$31.00 ©2019 IEEE
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Fig. 1. We analyze a DAB with voltage control. The load is modeled as a nominal resistance in parallel with a current sink. The switched model is in (a)
and its switch-cycle-averaged counterpart is in (b).

The feedback loop begins with the sensed load voltage and
current. We model the non-ideal voltage and current sensor as
having an off-nominal scaling factor εv and εi, respectively,
and an additive noise nv and ni, respectively. Hence, the
measured load voltage and current, vm and im, are

vm = (1 + εv)v + nv, (1)
im = (1 + εi)i+ ni. (2)

Reflecting on (1)–(2), ideal sensing is recovered in the limit
εv, εi, nv, ni → 0.

The voltage controller acts on the reference v? and the
compensator, denoted as Gc, produces the control effort u.
As shown in Fig. 1, the load current i, is added to the
control effort as a feedforward signal. The DAB utilizes phase-
shift modulation (PSM) where the secondary-side phase shift,
denoted as ϕ, is defined relative to the primary-side switch
signal. The switch-cycle-averaged DAB output current is [1]

io =
viϕ

nLωsw

(
1− ϕ

π

)
= ic − ie, (3)

where

ic :=
vi

nLωsw
ϕ, ie :=

vi
nLωsw

ϕ2

π
. (4)

We consider the setting where the the phase shift, ϕ, is kept
small such that ϕ � ϕ2/π, and hence ic � ie. To simplify
implementation and design, we designate the first-order term,
ic, as being directly manipulated by the controller. We apply
(4) and scale the control output, ic, by Lωsw/nvi to obtain
ϕ (see Fig. 1(a)). Given that the control output is a current
signal, we can abstract away the switch modulation and redraw
the switched converter in Fig. 1(a) as the circuit in Fig. 1(b)
where all variables are averaged over a switch cycle. Averaged
quantities are implied throughout from here forward. Note that
we retain the second order term, ie, in our averaged model to
capture the effect of the small-angle approximation error.

III. DEVELOPMENT OF THE EQUIVALENT CIRCUIT MODEL

Referring to the averaged model in Fig. 1(b), it is evi-
dent that the compensator input-side has a voltage difference

whereas the output is a current signal. Accordingly, the
compensator can be recast as an admittance that translates
the voltage difference v? − vm into a current, u, and the
relations on either side of the compensator can be understood
via Kirchhoff’s laws (see KVL and KCL relations in Fig. 1).
This observation allows us to define z−1c (s) := Gc(s), where
zc(s) is an impedance and its inverse is functionally equivalent
to Gc(s). Combining these insights, we redraw the averaged
system as the circuit in Fig. 2.

Note that the circuit model in Fig. 2 is an exact repre-
sentation of the averaged model when both are initialized
identically. Reflecting on the circuit model, the reference
signal v?, noise nv, and sensor scaling error component εvv,
act as voltage sources and the error voltage, e, is across zc(s).
To summarize, signals on the input-side of the compensator
take the form of voltage sources.

Switching focus to the compensator output side, the feed-
forward current is added to the control effort, u. Since the
feedforward and control effort are both current signals, we
map the control signals in Fig. 1(b) to a corresponding KCL
relationship in Fig. 2. Accordingly, the current sensor noise
becomes of a shunt current source and the scaling error effects
the controllable current source which models the feedforward.
Finally, the modeling error, ie, acts as a current source.

A. The Canonical Circuit Equivalent Model

Once we arrive at the equivalent circuit in Fig. 2, we seek
a canonical form that clearly emphasizes key input-output
relationships. Towards that end, we lump the model non-
idealities into composite current and voltage disturbance which
we denote as id and vd, respectively. In particular,

id =εii` + ni − ie, (5)
vd =εvv + nv, (6)

where id encapsulates the current sensor scaling error and
noise, as well as the small-angle approximation residual.
Similarly, vd contains the voltage sensor non-idealities and
noise. Due to scaling error in the feedforward current sensor,
an exact cancellation of R` is not possible. After accounting
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Fig. 2. The equivalent circuit model where the feedback and feedforward
control action are translated into equivalent circuit elements. For instance,
the setpoint, sensor non-idealities, and modeling errors are interpreted as
corresponding voltage and current sources.

for the off-nominal current sensor scaling, the effective load
which remains is R`/εi. The canonical circuit is in Fig. 3
where we denote the impedance across the output capacitor
and uncanceled load as

zp(s) =
1

sC

∥∥∥∥R`

εi
=

R`/εi
sC +R`/εi

. (7)

Having arrived at the simplified circuit in Fig. 3 where the
disturbances, references voltage, compensator, and load are
segregated, we can apply classical circuit analysis methods
to compute the closed-loop response. Applying superposition
along with the voltage and current divider equations, we obtain

v(s) =
zp(s)

zp(s) + zc(s)
v?(s)

− zp(s)

zp(s) + zc(s)
vd(s) +

zc(s)

zp(s) + zc(s)
zp(s)id(s). (8)

The first and second terms capture how the reference voltage
sensor errors are dropped across the series-connected load and
compensator impedances. The last term highlights how the
current signal nonidealities are divided up between the load
and compensator branches.

IV. TRANSLATING CIRCUIT LAWS INTO CONTROL LAWS

Having computed the closed-loop model in (8) with circuit
methods only, we next show how classical control relations can
be recovered from our result. This will effectively demonstrate
how our circuit-based approach is consistent with classical
control frameworks.

A. Closed-loop Models

To draw a clear linkage with established control methods,
we will rewrite our model with notation commonly seen in
controls analysis. Recall that the compensator transfer function
is related to its equivalent impedance by Gc(s) = z−1c (s).
Next, we designate the effective load impedance as being the
plant transfer function We define the , where zp(s) is given in
(7). Once we substitute these definitions into (8) and perform
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Fig. 3. We obtain the canonical circuit model where all undesirable system
characteristics are lumped into one voltage and current source disturbance.
This simplified model highlights key input-output relationships and facilitates
closed-loop system analysis.

some elementary algebraic manipulations, we recover the well-
known relations [9], [10] below:

v(s) =
Gp(s)Gc(s)

1 +Gp(s)Gc(s)
v?(s)

− Gp(s)Gc(s)

1 +Gp(s)Gc(s)
vd(s) +

1

1 +Gp(s)Gc(s)
Gp(s)id(s) (9)

The preceding definitions imply that the loop gain is simply
the ratio of the plant to controller impedances. We further
denote the voltage and current divider equations as Hv(s) and
Hi(s), respectively, to get the following definitions:

T (s) := Gp(s)Gc(s) =
zp(s)

zc(s)
, (10)

Hv(s) :=
zp(s)

zp(s) + zc(s)
, Hi(s) :=

zc(s)

zp(s) + zc(s)
. (11)

The closed-loop response can now be written compactly as

v(s) = Hv(s)v
?(s)−Hv(s)vd(s) +Hi(s)Gp(s)id(s), (12)

where it also follows that Hv(s) = T (s)/(1 + T (s)) and
Hi(s) = 1/(1+T (s)). We note that in the factors, T (s)/(1+
T (s)) and 1/(1 + T (s)), are classically known as the com-
plementary sensitivity and sensitivity functions, respectively,
in the controls community [9]. In the controls context, it is
well-known that T (s)/(1 + T (s)) and 1/(1 + T (s)) sum to
unity which implies design tradeoffs. In this paper we have
established a fundamental link between those quantities and
the voltage and current divider equations which also sum to
unity (i.e., Hv(s) + Hi(s) = 1). The implications of this
connection will be revisited later in the paper.

B. Circuit Representations of Prototypical Controllers

Here we consider a generic voltage compensator that can
be used in a variety of applications for both constant dc loads
and loads with pulsating components. In other words, we
seek a compensator model that can be applied to a variety of
applications. Consider a proportional-integral-resonant (PIR)
controller [11] where the integral and resonant terms give ideal
tracking at dc and a resonant frequency ωr. This gives

Gc(s) =
1

zc(s)
= kp +

ki
s
+

krs

s2 + 2ξωrs+ ω2
r

. (13)
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Fig. 4. Equivalent circuit model with a proportional-integral-resonant com-
pensator. The transfer function proportional, integral, and resonant terms
translate to resistive, inductive, and RLC tank branches.

To convert (13) to its corresponding circuit representation
recall that Gc(s) = z−1c (s) and equate (13) to

z−1c (s) = R−1eq + (sLeq)
−1 +

(
sLr +Rr +

1

sCr

)−1
. (14)

Since u(s) = z−1c (s)(v?(s) − v(s) − vd(s)) is a current, it
follows that each term in (14) corresponds to a parallel circuit
branch where the branch currents sum up to u(s). After some
manipulations to (14) and a comparison to (13), we obtain

Req =
1

kp
, Leq =

1

ki
, Lr =

1

kr
, Cr =

kr

ω2
r
, Rr =

2ξωr

kr
. (15)

These relations allow us to straightforwardly translate the pa-
rameters of a transfer function Gc(s) to corresponding circuit
elements. Ultimately, we arrive at the circuit representation in
Fig. 4. Note that PI and PR controllers are easily recovered
by eliminating extraneous branches (terms) from the circuit
equivalent (transfer function).

C. Closed-loop Circuit Performance

Now consider how classical notions of closed-loop perfor-
mance translate to the equivalent circuit properties. Tradition-
ally, it is well understood that ideal reference tracking is ob-
tained for frequencies where ‖T (jω)‖ = ‖Gp(jω)Gc(jω)‖ →
∞, the compensator Gc(jω) has high gain, and hence
‖Hv(jω)‖ ≈ 1 [12]. From a circuits perspective, recall that
‖T (jω)‖ = ‖zp(jω)/zc(jω)‖ and the voltage divider is equal
to ‖Hv(jω)‖ = ‖zp(jω)/(zp(jω) + zc(jω))‖. Accordingly,
high control gain is equivalent to ‖zc(jω)‖ → 0, the voltage
divider gain approaches unity, and the compensator behaves
as a short circuit. Along these lines, ideal tracking at dc and
at the resonant frequency, ωr, are obtained with the inductive
branch and resonant branches in Fig. 4 which map to integral
and resonant terms in Gc(s).
sum to unity, it follows that frequencies with ideal tracking

Shifting our focus to disturbance rejection, recall that the
sensitivity function and current divider expression are equiv-
alent such that ‖Hi(jω)‖ = ‖zc(jω)/(zp(jω) + zc(jω))‖.
Furthermore, since the voltage and current divider equations

(low value of ‖zc(jω)‖) also give rejection of the disturbances
contained in id(jω). Expanding on the circuit intuition, this
is consistent with zc(s) shunting id(s) away from the load.
Lastly since Hi(jω) = 1 − Hv(jω), it follows that the con-
troller frequency response (and its circuit equivalent) should
be tuned to balance reference tracking as well as rejection of
voltage sensor noise in vd(jω). Towards that end, the clas-
sical strategy of letting ‖T (jω)‖ roll off at high frequencies
where noise dominates is tantamount to rising compensator
impedance at high frequencies (i.e., limω→∞ ‖zc(jω)‖ → ∞).
This is reflected in the inductive branches of zc(s).

V. CONCLUSION

We introduced a framework to model voltage controlled
DABs as circuit equivalents. Compared to prior art, the pro-
posed model is unique since both the averaged converter and
control loop are represented as a unified circuit. Since the con-
troller feedback and feedforward action are represented with
an equivalent circuit structure, we reveal a deeper physical
intuition of how the closed-loop system operates. Furthermore,
we show how the equivalent circuit properties directly map to
classical concepts in control analysis. Grounds for future work
include the following objectives: i) generalization of circuit
equivalent models to other topologies, and ii) application of
circuit-based insights to control design.
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