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Abstract—In this paper, we introduce a method to analyze
three-phase inverters with current control as equivalent circuits.
In contrast to existing methods, both the averaged power stage
model and its closed-loop controller are represented as a single
unified circuit. Since the complete system can be examined as
one equivalent circuit, we can glean several insights on design
and operation; particularly relating to the time scales at which
the controller tracks reference signals and the ability to reject
disturbances. We leverage the insights afforded by this general
approach to outline design strategies for controllers in both
synchronous and stationary reference frames.

I. INTRODUCTION

Three-phase dc-ac inverters are ubiquitous across a va-
riety of energy-conversion and grid applications. State-of-
the-art approaches for modeling dc-ac inverters are mainly
focused on averaged power-stage models and their linearized
representations for small-signal analysis [1]. In this paper,
we propose a novel framework to model and analyze the
control- and averaged physical-layer dynamics of inverters as
a single equivalent circuit. In essence, we show that well-
known control strategies can be equivalently understood as
instances of circuit laws. This allows us to recast the closed-
loop system as an equivalent circuit composed of elementary
components (e.g., individual passive RLC elements, current
sources, voltage sources) and apply a circuit-driven approach
to control design. The proposed approach is intuitive, and it
yields several insights that facilitate controller design. We also
anticipate the unified circuit-based description would facilitate
analysis (e.g., stability analysis of networks of inverters).
Related to our approach are impedance-based modeling

methods. Under such frameworks, the inverter output terminal
is modeled as an ideal source in conjunction with an equivalent
impedance whose characteristics are based on the linearized
control loops [2]–[5]. Although this method is related to
circuit analysis, models in this setting do not represent the
control loops explicitly as circuits. Hence, a circuit model
with elementary constituent components is not realized. Also
related to this work are analog control methods for invert-
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ers [6]. While these controllers are implemented with op-
amp circuits, our approach is principally different since it is
geared towards modeling and accounts for the representation
of the full closed-loop system. Finally, we bring to attention
control strategies that involve inverters emulating dynamics of
nonlinear oscillator circuits [7] and synchronous machines [8]
that innately yield equivalent-circuit representations.
For the case of current-controlled three-phase inverters, we

demonstrate how algebraic relationships inherent in feedback
loops and feedforward paths are translated to equivalent-
circuits via elementary circuit laws. Our work differs from
some of the related methods referenced above in the sense
that the component-level structure of the equivalent circuit is
laid bare and its realization does not require linearization.
This modeling formalism is useful since it eliminates the
boundary that has hitherto separated control- and physical-
layer dynamics. Hence, the relationships between the various
control signals and physical variables are clearly illustrated
and this allow one to apply circuit-inspired rules of thumb
to design. Along these lines, we first show how proportional-
integral (PI) and proportional-resonant (PR) compensators, as
commonly seen in the synchronous dq and stationary αβ
frames, respectively, take the form of RLC circuits. Once
this is established, it becomes apparent that the tuning of
such controllers is tantamount to a circuit design problem
where the time constants of the various circuits are to be
systematically determined based on the desired closed-loop
performance. This is in contrast to established approaches in
the dq [1], [9], [10] and αβ [11]–[13] frames where design
is transfer-function-based and physical intuition is lost. In
summary, our paper provides the following contributions: i)
we show that current-control feedback and feedforward loops
intrinsically embed Kirchhoff’s Laws within them and leverage
this foundational tenet to formulate a unified circuit model for
three-phase inverters, ii) within the context of current control
for inverters, we define a one-to-one consistency between
circuit laws and classical control laws, and iii) we propose
a circuit-driven design methodology for inverters in both the
dq and αβ frames building on circuit-theoretic principles.
The remainder of this paper is organized as follows. Circuit-

equivalent modeling basics are introduced in Section II. Mod-
els for the synchronous dq and the stationary αβ frame
are provided in Section III. Numerical simulation results are
provided in Section V. Concluding remarks are in Section V.978-1-7281-1842-0/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 10,2022 at 21:46:44 UTC from IEEE Xplore.  Restrictions apply. 



II. CIRCUIT MODELING PRIMER
To familiarize the reader with the circuit-equivalent model

concept, we begin with the half bridge converter with current
control in Fig. 1(a). An output filter with inductance L and
parasitic resistance R interfaces the converter output with the
network. The voltage vo generically represents the voltage
across any active load, passive load, stiff voltage source, or
any combination thereof. The output current, i, is measured
and compared to the reference i�. The error, e := i� − i,
is fed to a compensator, Gc, which produces the control
effort u. Subsequently, the output voltage, vo, is used as a
feedforward signal which is added to u to produce the terminal
voltage command v�

t . Lastly, the terminal command is scaled
by the dc-side input voltage, vdc, and processed by pulse width
modulation (PWM) such that the converter terminal voltage,
vt, tracks v�

t .
From here forward, we consider switch-cycle-averaged

quantities such that PWM is abstracted away and vt = v�
t .

Reflecting on the well-known structure in Fig. 1(a), it is
evident that the compensator translates current differences
into a voltage signal u. Hence, the input and output sides
of the control block-diagram can be construed as instances
of Kirchhoff’s current and voltage laws, respectively. Since
Gc translates a current signal into a voltage signal, it follows
that the compensator itself is an impedance which we denote
interchangeably by zc. With due regard to Kirchhoff’s laws in
Fig. 1(a), we arrive at the equivalent circuit in Fig. 1(b) where
the compensator is represented as a passive RLC impedance,
i� translates to a current source, and the feedforward manip-
ulates a controllable voltage source.
To illustrate how the compensator drives i → i�, we

consider a controller with proportional, integral, derivative, and
resonant terms with the following transfer function

Gc(s) = zc(s) = kp + ki
1

s
+ kds +

krs

s2 + ω2
r

. (1)

This general controller is meant to highlight various appli-
cations where i� could have dc as well as ac components.
Simpler PI and PR implementations are straightforwardly
recovered by discarding unneeded terms. Comparison of (1)
to basic circuit laws allows us to obtain the passive RLC
instantiation of zc in Fig. 1(b) where the proportional, integral,
derivative, and resonant terms correspond to a resistor, capac-
itor, inductor, and resonant tank which are cascaded to obtain
the controller. In the circuit setting, PI and PR controllers are
obtained by short-circuiting unused components.
Reflecting further on the equivalent circuit model, it is ap-

parent that the error current, e, flows through zc and the control
effort, u, is the voltage across zc. Here, ideal reference tracking
at some frequency ω� is obtained when ‖zc(jω�)‖ → ∞
such that zc behaves as an open circuit and the only available
path for the reference current is into the physical branch
(i.e., i → i�). This is obtained at dc for ω� = 0 with a
capacitive element, at some resonant frequency ω� = ωr with
an LC tank, at high frequencies ω� → ∞ with an inductor,
and proportional control action maps straightforwardly as a
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Figure 1: A half-bridge converter with current control is depicted in (a).
Kirchhoff’s current and voltage laws are embedded within the input and output
sides of the compensator and allow us to obtain the equivalent closed-loop
circuit model in (b).

resistor. With the circuit model, it is also clear that feedforward
cancels voltage disturbances on the output of the converter.
In the remainder of the paper, we apply the fundamental

concepts illustrated in Fig. 1 to three-phase inverters. All
analysis will be carried out in two-dimensional reference
frames where dq and αβ pertain to the synchronous and
stationary reference frames, respectively. We adopt the short
hand notation xdq and xαβ to denote the following complex
quantities:

xdq = xd + jxq, xαβ = xα + jxβ . (2)

Our study is restricted to balanced ac systems where the zero-
axis component is discarded. Phase-locked-loop (PLL) and dc-
side dynamics are also neglected and reserved for future work.

III. CIRCUIT-EQUIVALENT MODELS FOR THREE-PHASE
INVERTERS

We now apply the basic concepts sketched out in Section II
to derive circuit-equivalent representations for inverters in the
dq- and αβ-reference frames.

A. The Synchronous dq Reference Frame

We begin with the well-established model in Fig. 2(a) which
depicts the cross-coupling between axes, the d- and q-axis
control loops with PI compensators, and feedforward signals.
Application of the concepts in Section II allow us to translate
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Figure 2: (a) The conventionally drawn representation of a dq-axis model
for a three-phase inverter with current control. (b) Equivalent circuit model
where the feedback and feedforward paths are captured with circuit elements.
Similar to the definition in (2), xqd := xq − jxd.

this into the circuit representation in Fig. 2(b) where the PI
compensator is an RC circuit, feedforward signals manipulate
a voltage source, and the references are current sources. For
convenience, we represent both axes compactly in a single
circuit which admits complex-valued signals.

Unlike conventional transfer-function-based analysis where
derivation of the closed-loop response requires several alge-
braic steps, the equivalent circuit gives this directly via the
current divider rule. Assuming ideal sensing and feedforward
cancellation of the vdqo ± ωLiqd disturbance, the closed-loop
response is

H(s) =
idq(s)

idq�(s)
=

zc(s)

zc(s) + zf(s)

=
kp + ki/s

(kp + ki/s) + (R + sL)
. (3)

The above formulation matches what is well-known in the
literature [1]. The key difference being that we arrive at it via
the application of a well-known circuit law and obtained it
directly by inspection of a circuit. Now consider the control-
synthesis problem where a typical objective is to determine
the PI control gains, kp and ki, such that H(s) is a first-order
system with time constant τ . To this end, we highlight the
following result.

Theorem. The closed-loop transfer function, H(s), is first-
order with time constant, τ ,

H(s) =
1

1 + τs
, (4)

if and only if the time constant τc of the RC circuit-equivalent
of the PI compensator,

τc =
kp
ki

, (5)

matches the time constant τf of the inductive output filter:

τf =
L

R
. (6)

Proof. To prove the forward direction, we begin by expressing

H(s) =
kps + ki

Ls2 + (R + kp)s + ki
=:

N(s)

D(s)
. (7)

For H(s) (as expressed above) to match the desired first-order
system representation in (4) with time constant τ , we need

D(s) = N(s)(1 + τs). (8)

Matching coefficients, we can conclude that this implies kp =
L/τ and ki = R/τ , or equivalently, that τc = τf . To prove
the reverse direction, with elementary algebraic operations, we
can express

H(s) =

(
1 +

1 + τfs

1 + τcs
· R
ki
s

)−1

. (9)

From above, we can infer that if τc = τf , then H(s) is a
first-order transfer function with time constant τ = R/ki. �
A physical interpretation of the result above naturally

emerges from the circuit-based model. In summary, it is a
matching of the time-constants between each set of pairwise
RC and RL circuit elements which gives a first-order circuit
response. This interpretation is indeed qualitatively different
from the frequency-domain notion of pole-zero cancellation
in the closed-loop transfer function.

B. The Stationary αβ Reference Frame

The classical current-controlled inverter model in the αβ
reference frame is illustrated in Fig. 3(a). Again, we apply
the basic principles in Section II to arrive at the equivalent
circuit model in Fig. 3(b). Since the reference signal and load
voltage are sinusoidal, we adopt the typical strategy where the
compensator takes on a PR form given by

Gc(s) = zc(s) = kp +
krs

s2 + ω2
r

, (10)

where the compensator resonant frequency, denoted as ωr, is
chosen to coincide with the load (or grid) frequency (e.g., 50
or 60Hz). Again, the resonant structure revealed in Fig. 3(b)
clearly shows that zc acts as a high impedance path at the
resonant frequency.
Mirroring (3), the relationship between the current refer-

ence, iαβ�, and output current, iαβ , is captured by the transfer
function:

H(s) =
iαβ(s)

iαβ�(s)
=

zc(s)

zc(s) + zf(s)

=
kp(s

2 + ω2
r) + krs

(s2 + ω2
r )(sL + R) + kp(s2 + ω2

r ) + krs
. (11)
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Figure 3: (a) Equivalent αβ-axis model for three-phase voltage-source inverter
with inductive output filter and current control. (b) Circuit representation
capturing compensator action recovered leveraging KVL and KCL.

Note that H(s) is third-order and is generally difficult to ana-
lyze. However, the circuit-equivalent provides insights that are
leveraged to facilitate design. The PR compensator admittance
yc := z−1

c is given by:

yc =
1

zc
=

1

kp

s2 + ω2
r

s2 + kr

kp
s + ω2

r

. (12)

Note that yc has the same form as a notch filter (i.e., band-
stop filter) [14] with center frequency ωr. Furthermore, the
ratio kr/kp is related to the notch filter damping factor, ζ, and
resonant frequency, ωr, as follows:

kr
kp

= 2ζωr =
2

τc
, (13)

where τc is the time-constant of the compensator RLC branch.
This is consistent with classical dynamical systems analysis
where second order linear systems are known to have a time
constant equal to ζωr. Rearranging terms in (11) allows us to
isolate the dynamics of a notch filter, and yields

H(s) =
kp(

s2 + ω2
r

s2 + kr

kp
s + ω2

r

)
︸ ︷︷ ︸

notch filter

(sL + R) + kp

. (14)

Now we proceed to the design task and first select the
proportional gain, kp. Since the notch factor in (14) is in-effect
inactive at frequencies sufficiently far from ωr, the closed-loop

TABLE I
INVERTER FILTER AND CONTROLLER PARAMETERS.

Symbol
Details

Description Value Units

L Filter inductance 1.5 mH
R Filter resistance 0.5 Ω
ωr Resonant & grid frequency 2π60 rad/s
ωc Cut-off frequency 2π300 rad/s
kp Proportional gain of PI 2.83 Ω
ki Integral gain of PI 942 F−1

kp Proportional gain of PR 2.33 Ω
kr Resonant gain of PR 1552 H−1

response can be approximated as

H(s) ≈ kp
sL + R + kp

=
kp

kp + R

(
1 +

L

kp + R
s

)−1

, (15)

at those frequencies. With the approximate first-order behavior
in (15), we can engineer the response to have a user-defined
cut-off frequency, denoted as ωc, by choosing

kp = ωcL−R, (16)

where ωc is sufficiently higher than ωr. Here the circuit
interpretation reveals that the compensator resistance, kp, is
equal to the difference between the physical-branch inductive
reactance and resistance at ωc.
We now shift focus to the resonant gain kr. Mimicking

the strategy used in the dq-domain above, we match the time
constant of the second order compensator (as defined in (13))
with the time-constant of the phyical RL branch. This gives

τc =
2kp
kr

=
L

R
. (17)

Substituting (16) into (17) yields the resonant gain

kr = 2
R

L
kp = 2ωcR− 2

R2

L
. (18)

This completes the design procedure for the PR controller.
Here we note that the circuit-based interpretation again shows
that time-constant matching between cyber and physical circuit
elements gives a systematic design approach.

IV. SIMULATION RESULTS

To substantiate the performance of the above-mentioned PI
and PR compensators with control gains obtained based on the
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Figure 4: Performance of PI current controller in the synchronous dq reference
frame.
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Figure 5: Sinusoidal waveforms associated with the inverter in the stationary
αβ reference frame.

circuit-equivalent model, two sets of simulations configured
with system parameters listed in Table I were carried out.
Figures 4 and 5 present the time-domain simulation results for
the PI compensator and PR compensator, respectively. Due to
the symmetry of the two-dimensional components, we only
show the d-axis component id in the dq reference-frame and
the α-axis component iα in the αβ reference-frame.
In Fig. 4, we can observe that the dc current tracking

performance (id → id�) follows a first-order system response
as required. In Fig. 5, we can also see that the current iα

tracks the current reference iα�. This is accomplished with
zero steady-state amplitude and instantaneous phase-tracking
error and desired transient dynamics are achieved.

V. CONCLUSIONS & FUTURE WORK

In this paper, we derived unified circuit-equivalent represen-
tations capturing controller and filter dynamics for current-
controlled inverters. Results were given in both the syn-
chronous dq and stationary αβ reference frames. A variety
of circuit-theoretic notions and rules of thumb were then
leveraged for controller design. As part of future work, we
will aim to incorporate the PLL and dc-link dynamics into the
circuit-based representation.
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