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Abstract—In this paper, we present a virtual oscillator control
(VOC) strategy for power inverters to operate in either grid-
connected or islanded settings. The proposed controller is based
on the dynamics of the nonlinear Andronov-Hopf oscillator and it
provides voltage regulation, frequency support in islanded mode.
It also features the potential to respond to real- and reactive-
power setpoints for dispatchability in grid-connected mode. In
contrast to early VOC incarnations which exhibit undesirable
harmonics, the proposed controller offers a sinusoidal ac limit
cycle as well as improved dynamic performance. Moreover, the
proposed controller intrinsically generates orthogonal signals
which facilitate implementation in three-phase systems. We
study the controller dynamical model and outline a systematic
design procedure such that the inverter satisfies standard ac
performance specifications. Numerical simulations validate the
analytical developments.

I. INTRODUCTION

Techniques to synchronize inverters in ac electric power

systems have largely been based on droop-control methods

that draw inspiration from the quasi-steady-state operation

of synchronous generators [1]–[3]. Along similar lines, so-

called virtual synchronous machine methods are focused on

direct emulation of machine dynamics [4]–[6]. Departing from

machine-inspired approaches, virtual oscillator control (VOC)

is a control strategy where inverters are programmed to emu-

late the dynamics of weakly nonlinear limit-cycle oscillators

such as dead-zone and Van der Pol oscillators [7]–[9]. These

oscillators can generate periodic, self-sustained, and stable

oscillations, and when leveraged as controllers for islanded

inverters, they offer communication-free synchronization and

power sharing [10], as well as voltage and frequency reg-

ulation [11]. Analysis also shows that VOC subsumes the

functionality of conventional droop control in steady state

while providing enhanced dynamic speed [12], [13] due to

its time-domain implementation. The small-signal stability of

a mixed machine-VOC inverter system has also been inves-

tigated in [14]. [15] applies the VOC in commercial current-

controlled inverters with dual voltage and current loops.
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Those previous controllers exhibited insurmountable trade-

offs between harmonics (mainly 3rd order) and transient perfor-

mance (i.e., a Van der Pol oscillator that is tuned to offer lower

harmonic content can only do so at the expense of a sluggish

response [11], [16]), which to some extent limits their adoption

in the grid-connected application. Furthermore, existing VOC

controllers are not well suited for three-phase system due to

the existence of only one input for feedback [9], [17]. This

implies that such controllers might be difficult to apply in

unbalanced three-phase settings. Lastly, the dead-zone and Van

der Pol oscillators themselves do not offer seamless control of

real and reactive power, and hence, require additional loops if

the ac-side power must be modulated to track references [9],

[18], [19]. Along these lines, it is worth pointing out the

dispatchable VOC methods, which are also called dVOC, that

were recently reported in [20]–[22]. Interestingly, this type of

controller is synthesized in a top-down system-level design

procedure and ends up taking a similar form to the controller

studied here. One key difference is that our design objectives

are based on local inverter-level objectives which yield a

simple design procedure.

To address the issues of previously proposed VOC strategies

that are highlighted above, we introduce a grid-compatible

oscillator for inverter control that emulates the dynamics of

so-called Andronov-Hopf systems [23]. These dynamics are

symmetric and planar, and they intrinsically embed orthogonal

signals which are applicable to three-phase implementations.

Remarkably, this oscillator type presents a perfectly circular

limit cycle in steady-state with superior voltage and cur-

rent quality. Furthermore, we can pre-specify the real-power,

reactive-power, voltage and frequency set-points that makes

it highly versatile for operation in both grid-connected and

islanded settings. In this paper, we explicate the operating

principles of the proposed controller and a systematic design

procedure which ensures a wide range of user-defined perfor-

mance criteria can be met at the inverter level.

The remainder of this paper is organized as follows: In

Section II, we establish notation and the nonlinear oscillator

dynamics. An implementation for three-phase inverters is

outlined in Section III, and Section IV provides a control

design procedure. Section V gives numerical simulations to

illustrate dynamic performance. Finally, conclusions and per-

tinent directions for future work are in Section VI.
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II. DYNAMICAL MODEL OF OSCILLATOR

In this section, we briefly outline mathematical notation

and describe the dynamical oscillator model that underlies the

proposed controller.

A. Notation

We consider balanced three-phase operation, where voltages

and currents, {ua, ub, uc} can be modeled equivalently in

the αβ domain as signals {uα, uβ} if zero-sequence com-

ponents are disregarded. Clarke’s transformation [24] is used

to obtain the αβ components. By way of notation, uαβ :=
[uα, uβ ]� ∈ R

2, where (·)� denotes the matrix transpose.

Given θ ∈ [0, 2π], we define the rotation matrix

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

The Euclidean norm of vector, x ∈ R
N is denoted by ‖x‖.

B. Nonlinear Oscillator

We introduce the nonlinear oscillator that underlies the

proposed controller by first discussing the dynamical model of

a harmonic oscillator. The general planar differential-equation

model for the harmonic oscillator is given by[
ẋ1

ẋ2

]
=

[
0 −ωnom

ωnom 0

] [
x1

x2

]
, (1)

where x1 and x2 are the states, and ωnom denotes the

resonant frequency at which the oscillator exhibits unforced

sinusoidal oscillations. As a means to regulate the amplitude of

oscillations (which are entirely initial-conditions dependent for

the harmonic oscillator), we consider the following nonlinear

extension to the model introduced above:[
ẋ1

ẋ2

]
=

[
ξ(2X2

nom − ‖x‖2) −ωnom

ωnom ξ(2X2
nom − ‖x‖2)

] [
x1

x2

]
. (2)

The above dynamical model yields oscillations with RMS am-

plitude Xnom, and ξ is a constant that dictates the convergence

speed to steady state (in subsequent developments, we refer

to it as the speed constant). Figure 1 sketches trajectories

yielded by the above model: the state trajectories always spiral

asymptotically towards a stable circular limit cycle with a

1x

2x

nomω

nomX2
√

2x+ j1x

θ

initial state 1

initial state 2

Figure 1: When unforced, the proposed oscillator has a circular limit cycle

with radius
√
2Xnom and constant rotational frequency ωnom. Any initial

condition, aside from the origin, converges to this circular trajectory.

fixed radius
√

2Xnom and constant rotation frequency ωnom

regardless of initial conditions. We now describe how the

proposed controller derives from this nonlinear oscillator.

III. INVERTER CONTROLLER DEVELOPMENT AND

DYNAMICAL PROPERTIES

In this section, we introduce the proposed controller for

three-phase inverters. The controller leverages the nonlinear

model introduced in (2), and permits voltage and frequency

regulation while affording responses to active- and reactive-

power setpoint changes.

A. Inverter Controller and Implementation

An illustration of the proposed controller and the manner in

which it interfaces with the three-phase inverter is shown in

Fig. 2. All elements included in the box marked “Microcon-

troller” are digitally realized. The physical inverter includes

the dc source, a three-phase hex-bridge, and an output LCL
filter consisting of inverter-side inductors Lf , filter capacitors

Cf and grid-side inductors Lg. The controller is composed of

two parts: i) A resonant LC tank, with its natural resonant

frequency denoted by ωnom := 1/
√
LC. The circuit states are

the capacitor voltage and scaled inductor current:

x = [x1, x2]
� = [vC, εiL]�, (3)

where ε :=
√

L/C. ii) Nonlinear state-dependent voltage and

current sources vm and im given by

vm :=
ξ

ωnom

(
2X2

nom − ‖x‖2)x2,

im :=
ξ

εωnom

(
2X2

nom − ‖x‖2)x1.

(4)

The above expressions are derived from the nonlinear oscilla-

tor model introduced in (2). Basically, vm and im collectively

absorb energy from or provide energy to the circuit such that

‖x‖ → √
2Xnom asymptotically, and a circular trajectory with

resonant frequency ωnom is maintained.

The oscillator is interfaced to the physical converter system

through voltage and current scalings κv and κi, respectively.

We scale the orthogonal oscillator states, vC and εiL, by κv

to generate the voltage commands, vαβ , in the αβ frame:

vαβ := κv[vC, εiL]�. (5)

The inverter terminal voltage vabc is hence established through

power stage and PWM. Furthermore, the inverter output cur-

rents, denoted by iabc, are measured and transformed to iαβ ,

and then scaled by κi to act as the input signals, u1 and u2,

which are derived from the difference between measured line

currents iαβ and current setpoints i�αβ , as follows:

u :=

[
u1

u2

]
= κiR(ϕ)(iαβ − i�αβ). (6)

Above, ϕ is a user-defined rotation angle. In subsequent

developments pertaining to voltage and frequency regulation,

we will illustrate how ϕ is a key parameter that determines the

relationship between voltage amplitude and frequency versus
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Figure 2: A three-phase inverter with the proposed nonlinear oscillator-based controller.

real and reactive power. Finally, the proposed controller can

respond to real- and reactive-power setpoints, P � and Q�

(issued potentially from an external dispatch center). These are

converted into current commands in the αβ frame as follows:[
i�α
i�β

]
=

2

3‖vαβ‖2
[
vα vβ
vβ −vα

] [
P �

Q�

]
. (7)

B. Voltage and Frequency Dynamics

We now proceed to discuss the inverter voltage- and

frequency-regulation characteristics. To do so, we first begin

with the oscillator circuit-states dynamics, which in this case

are those corresponding to the capacitor voltage vC and

inductor current iL. From the circuit representation in Fig. 2,

we see that these dynamics are given by:

C
dvC
dt

= −iL +
ξ

εωnom
(2X2

nom − ‖x‖2)vC − u1,

L
diL
dt

= vC +
ξ

ωnom
(2X2

nom − ‖x‖2)εiL − εu2.

(8)

Then, the following dynamics are obtained for vαβ =
κv[vC, εiL]� by appropriately substituting (6) into (8)

[
v̇α
v̇β

]
=

⎡
⎢⎣

ξ

κ2
v

(
2V 2

nom − ‖vαβ‖2
) −ωnom

ωnom
ξ

κ2
v

(
2V 2

nom − ‖vαβ‖2
)
⎤
⎥⎦[vαvβ

]

− κvκi

C

[
cosϕ − sinϕ
sinϕ cosϕ

][
iα − i�α
iβ − i�β

]
, (9)

where Vnom := κvXnom is nominal inverter voltage RMS

amplitude. For grid-connected mode, Vnom can be set to either

grid nominal voltage Vg,nom or the measured grid voltage

amplitude. The expressions for the voltage RMS amplitude

V and phase angle θ are given by

V =
1√
2

(
v2α + v2β

) 1
2 , θ = arctan

(
vβ
vα

)
. (10)

From these elementary definitions and (9), the following dy-

namical model for amplitude V and phase angle θ is obtained

V̇ =
vαv̇α + vβ v̇β

2V
=

ξ

κ2
v

V
(
2V 2

nom − 2V 2
)

− κvκi

3CV
(sinϕ(Q−Q�) + cosϕ(P − P �)) ,

(11)

θ̇ =
vαv̇β − vβ v̇α

2V 2
= ωnom

− κvκi

3CV 2
(sinϕ(P − P �) − cosϕ(Q−Q�)) .

(12)

It can be observed that the dynamics of both voltage amplitude

V and phase angle θ vary with the difference between the

actual real- (reactive-) power and reference real- (reactive-)

power, and also with different rotation angle ϕ.

C. Steady-state Voltage and Frequency Regulation

With appropriate decoupling assumptions, various dynami-

cal model for amplitude V and frequency ω can be recovered

from (11) and (12): with ϕ = 0, the proposed controller trades

off V versus P and ω versus Q, with ϕ = π/2, V is traded off

for Q and ω is traded off for P . For subsequent developments,

we select ϕ = π/2, which is applicable to inductive networks.

Then, (11) and (12) turn to:

V̇ =
ξ

κ2
v

V
(
2V 2

nom − 2V 2
)− κvκi

3CV
(Q−Q�),

θ̇ = ωnom − κvκi

3CV 2
(P − P �).

(13)

Setting the derivatives V̇ = 0 and θ̇ = ω yields the steady-state

voltage amplitude, V , and frequency, ω, relations as follows:

V =
Vnom√

2

(
1 +

√
1 − 2κiκ

3
v

3CξV 4
nom

(Q−Q�)

) 1
2

,

ω = ωnom − κvκi

3CV 2
(P − P �).

(14)
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While the trade-off is linear for P−ω, it is nonlinear for Q−V .

Nonetheless, we will show numerically that the Q−V curve is

close to linear. We also know from (14) that in grid-connected

mode the inverter locks on the grid frequency, ω → ωnom,

and real power P will track P �. In islanded mode, deviations

from nominal conditions can be compensated with the power

setpoints.

D. Transient Dynamics

Given the dynamical models in place for the voltage

magnitude and frequency, a variety of transient performance

specifications could be readily investigated. We focus on: i) the

voltage rise time, trise, and ii) the time to transition between

two real-power setpoints. In particular, we outline a design

strategy for the controller parameters that yield specified

values of the above transient performance specifications. The

maximum allowable voltage rise time and power-transition

time constant are denoted by tmax
rise and τmax, respectively.

1) Voltage Rise Time: This time period describes how fast

an unloaded inverter establishes its terminal voltage. By setting

Q = Q� and multiplying both sides of (13) by V , we have

V V̇ =
ξ

κ2
v

V 2
(
2V 2

nom − 2V 2
)
. (15)

Note that since the above is an ordinary differential equation,

we can get the voltage rise time trise by integrating both sides

from 0.1Vnom to 0.9Vnom (we pick these limits without loss

of generality). Defining M = V 2 and Mnom = V 2
nom, we have

Ṁ =
4ξ

κ2
v

M (Mnom −M) , (16)

from which we can express:

dt =
κ2
v

4ξ

1

M (Mnom −M)
dM. (17)

Integrating both sides,

trise =
κ2
v

4ξ

∫ 0.81Mnom

0.01Mnom

1

M (Mnom −M)
dM

=
3κ2

v

2ξMnom
=

3κ2
v

2ξV 2
nom

.

(18)

Substituting Vnom = κvXnom yields

trise =
3

2X2
nomξ

. (19)

This indicates that the rise time trise is inversely proportional

to oscillation amplitude X2
nom and speed constant ξ. It means

that we can tune the parameter ξ to set the voltage rise time.

2) Power-transition Time Constant τ : Next, we demon-

strate that real power dynamics are approximately first-order,

and the time constant τ of the response can be adjusted

by tuning pertinent system and oscillator parameters. In an

inductive network, three-phase real power P is

P = 3
V Vg

X
sin(θ − θg) ≈ 3

V Vg

X
(θ − θg), (20)

where Vg is the grid RMS voltage, θg is the grid phase angle,

and X = ωnom(Lf +Lg) is the filter and line impedance (see

Fig. 2). The filter capacitance Cf is neglected because it only

addresses switching frequency components. Due to the fact

Δθ = θ − θg ≈ 0, we assume sin Δθ ≈ Δθ. Using (13), Δθ̇
can be expressed as given below when θ̇g ≈ ωnom:

Δθ̇ = − κvκi

3CV 2
(P − P �). (21)

From (20) and (21), we obtain

Ṗ = −κvκi

CX
(P − P �). (22)

In the Laplace domain, we get:

P =
1

τs + 1
P �, τ =

CX

κvκi
. (23)

Evidently, P tracks P � via first-order dynamics with time

constant τ . We can tune C to obtain desirable power dynamics.

IV. OSCILLATOR DESIGN PROCEDURE

In this section, we outline a design procedure to select the

oscillator parameters such that the inverter satisfies a set of

user-defined performance specifications.

A. Design Objectives

The performance specifications that we expect the inverter

to conform to are summarized in Table I. These include:

1) Nominal RMS line-neutral output voltage Vnom and min-

imum permissible voltage, Vmin,pu; 2) Rated apparent power

Srated, real power Prated, and reactive power Qrated; 3) Nom-

inal frequency ωnom and frequency regulation |Δω|max;

4) Maximum rise time tmax
rise and power-tracking time constant

τmax. The oscillator parameters to be designed are listed in

Table II. They include: nominal oscillation amplitude Xnom,

TABLE I

THREE-PHASE INVERTER PERFORMANCE SPECIFICATIONS.

Symbol Description Value Units

Srated Rated apparent power 1200 W
Prated Rated real power 850 W
Qrated Rated reactive power 850 VAR
Vnom Nominal output voltage 80 V RMS
Vmin, pu Per-unit minimum voltage 0.95 –
ωnom Nominal frequency 2π60 rad/s
|Δω|max Maximum frequency offset 2π0.5 rad/s
tmax
rise Maximum voltage rise time 120 ms
τmax Power-transition time constant 40 ms

TABLE II

NONLINEAR OSCILLATOR PARAMETERS.

Symbol Description Value Units

Xnom Nominal oscillation amplitude 1 V
κv Voltage-scaling factor 80 V/V
κi Current-scaling factor 0.20 A/A

ξ Speed constant 15 1/sV2

C Virtual capacitance 0.2679 F
L Virtual inductance 26.268 μH

2646

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 10,2022 at 21:46:43 UTC from IEEE Xplore.  Restrictions apply. 



u
p

V
1

1

0 0 upPupQ

u
p

ω

V−Q ω−P

= 0up
�Q

= 0up
�P

=up
�P 1=up

�Q 1

(a) Voltage-reactive power curve (b) Frequency-real power curve

95.0

1 1

Figure 3: Steady-state per-unit inverter voltage- and frequency-regulation.

scaling factors κv and κi, speed constant ξ, and oscillator

inductance and capacitance L and C, respectively.

To facilitate system design, we seek an oscillator which

yields unity normalized RMS amplitudes of its states [x1, x2]
�

and inputs [u1, u2]
� (i.e., Xnom = 1 V and ‖u‖/√2 = 1 A)

when the inverter is fully loaded P = Q = 1 (‖iαβ‖/
√

2 =
Srated/3Vnom), with setpoints P � = Q� = 0 (i�αβ = 0). Under

such conditions, it follows that the voltage and current scaling

factors must be chosen as

κv := Vnom, κi := 3
Vnom

Srated
. (24)

B. The Per-unit Model

Next, we transfer the amplitude and frequency dynamics in

(13) to a per-unit model, in which all signals are expressed

as fractions of their defined base values. This simplifies the

design process since per-unit values do not vary with inverter

ratings. Consider the following per-unit quantities:

Vpu =
V

Vnom
, ωpu =

ω

ωnom
,

Ppu =
P

Prated
, Qpu =

Q

Qrated
.

(25)

Substitution of (24) and (25) into (13) yields the following

per-unit dynamical-system model

V̇pu=2ξVpu(1 − V 2
pu)−

1√
2CVpu

(Qpu −Q�
pu), (26)

ωpu = 1 − 1√
2CωnomV 2

pu

(Ppu − P �
pu). (27)

Note that Srated =
√

2Prated =
√

2Qrated. Solving V̇pu = 0
gives the following steady-state per-unit Vpu expression (anal-

ogous to (14)) as

Vpu =

√√√√√√1 +

√
1 −

√
2

Cξ
(Qpu −Q�

pu)

2
. (28)

As shown above, the steady-state Q−V relationship depends

on ξ and the capacitance C whereas the P−ω relationship only

depends on C. This is true because the amplitude Vpu is close

to unity and has only a second-order influence on the phase

dynamics. Figures 3(a) and (b) show the resulting Q− V and

P − ω curves for (27) and (28). In these figures, we observe

that the power setpoints P �
pu and Q�

pu only make the curves

move up and down, but have no impact on the droop slopes.

Hence, in the subsequent design, we fix the P �
pu = Q�

pu = 0.

C. Design of ξ and Capacitance C

The maximum steady-state voltage and frequency deviations

occur when the expressions in (28) are evaluated at Prated

(Ppu = 1) and Qrated (Qpu = 1). Given a user-defined

minimum terminal voltage Vmin,pu (which occurs at Qpu = 1)

and maximum allowable frequency deviation |Δω|max (which

occurs at Ppu = 1), we have

Vmin, pu =

√√√√√√1 +

√
1 −

√
2

Cξ

2
, (29)

Δω =
1√

2CV 2
min, pu

≤ |Δω|max . (30)

Then, we get the following constraint for the product Cξ, and

the following lower bound for C:

Cξ =

√
2

4V 2
min, pu

1

1 − V 2
min, pu

, (31)

C ≥ 1√
2V 2

min, pu

1

|Δω|max

=: Cmin. (32)

In order to meet the transient response specifications, we also

obtain the following constraints for ξ and C:

trise =
3

2ξ
≤ tmax

rise , ξ ≥ 3

2tmax
rise

=: ξmin, (33)

τ =
XC

κvκi
≤ τmax, C ≤ τmax 3V 2

nom

XSrated
=: Cmax. (34)

D. A Complete Design Procedure
From the developments above, Xnom, κv, and κi can be

computed unambiguously as (24). The feasible set of ξ and

C values which satisfy all performance specifications are

given by the constraints in (31)–(34) (see also Fig. 4). Once
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Figure 4: Values of ξ and C that satisfy performance specifications.

a value of capacitance C is chosen, the virtual inductance,

L, is a dependent design variable since ωnom = 1/
√
LC,

and the nominal system frequency is specified. According

to the constraints in (32) and (33), oscillator parameters ξ
and capacitance C can be selected as shown in Fig. 4. In

this design, both filter inductance are chosen as 1.5 mH,

X = 1.131 Ω. The overall choice of oscillator parameters is

listed in Table II.

V. SIMULATION RESULTS

We now illustrate the performance of the proposed in-

verter controller through detailed simulation results for grid-

connected and islanded modes of operation.

A. Power Tracking

When connected to a stiff grid, the oscillator-controlled

inverter is able to track the power setpoints P �, Q�. During

grid-connected mode in Fig. 5, we show the case where

Q� is fixed at zero and the real power setpoints evolve as

P �: 0 W → 500 W → 1000 W → 500 W. Observe that the

actual real power P closely tracks the power setpoints. Once

2 4 8 106 12 14
t, [s]

0

Grid-Connected Mode Islanded Mode

200

400

600

800

1000

[V
A

r]
/Q

,
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]
P
,

P

Q
0

First-order

Figure 5: Real- and reactive-power transients in the grid-connected (0 to 8 s)

and islanded modes (8 - 14 s), step changes of P � happen at 2, 4, 6 s, load

step change at 11 s.
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Figure 6: Inverter voltage frequency transients between grid-connected and

islanded modes of operation.
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Figure 7: Corresponding inverter voltage amplitude RMS value transients.

the system is islanded at t = 8 s, the setpoints are fixed

at P � = 500 W and the inverter supplies a resistive load

(RL = 20Ω, PLoad = 960 W). A load step is initiated at

t = 11 s where PLoad decreases from 960 W to 480 W.

B. Voltage and Frequency Regulation

Figures 6 and 7 show the inverter frequency ω and amplitude

RMS value V , respectively. During grid-connected mode, we

assume the grid has a stiff voltage amplitude and frequency at

nominal values. In such a setting, the oscillator locks onto the

grid frequency and ω → ωnom in steady-state. Under islanded

conditions, the frequency decreases to 59.77 Hz in accordance

with (26) and (27). At the load step down event at t = 11 s,

we can see that the inverter frequency tracks back to grid

frequency, 60 Hz, because PLoad ≈ P � at this point.

C. Transient Performance

To substantiate the transient dynamic performance of real

power P and voltage V , Fig. 8 shows the voltage and current

waveforms. It can be observed that the current dynamics

are first-order and has the same time constant as the power

dynamics in Fig. 5. Figure 9 shows the voltage rise time from

0.1Vnom to 0.9Vnom. We observed that it took around 105 ms

for inverter to establish the terminal voltage, which meets the

design transient specification tmax
rise .

VI. CONCLUSIONS & FUTURE WORK

In this paper, we analyzed and designed a dispatchable

oscillator inverter controller. Compared to existing VOC im-

plementations, it eliminates low-frequency harmonics, can
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be designed faster, and operate in both islanded and grid-

connected settings. Future work includes experimental vali-

dation and investigation of the proposed controller in complex

networks.
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