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Abstract—The nonlinear nature of dual active bridge (DAB)
converters arises from switching between linear dynamics at
controlled intervals. In this paper, we model DAB as a hybrid
dynamical system consisting of a finite number of modes with
linear dynamics and switching surfaces specifying the transition
between the modes. In the conventional phase shift modulation
(PSM) strategy, the phase shift ϕ governs the mode transitions
and can be used to control DAB output voltage and power. We
incorporate ϕ as a system state and calculate a linearization
about a nominal trajectory with so-called saltation matrices that
capture the first-order effects of perturbing the states between
mode transitions. We demonstrate this linearization provides an
accurate discrete-time small-signal model of the DAB.

Index Terms—Hybrid dynamical systems, discrete-time mod-
eling, saltation matrices, dual-active-bridge converters

I. INTRODUCTION

Dual active bridge (DAB) converters are essential in applica-
tions where isolation and high voltage conversion ratios are re-
quired [1]. The advantages of DAB includes both bidirectional
operation and extended zero voltage switching (ZVS) over
wide range of power, resulting in low device stress and high
power density. While the symmetry of DAB lends itself to very
simple control, the large number of switches allows for several
intricate pulse width modulation (PWM) control techniques.
The performance of these control techniques relies heavily
on the underlying model of DAB. The common modeling
technique for dc–dc converters is small signal perturbation of
the dc state variables around their nominal values [2]. This
method however does not apply to DAB due to the presence
of high-frequency ac signals in transformer between the two
H-bridges.

One of the most common control objectives for DAB is
regulating the output dc link voltage. A large signal average
model of DAB results in a first order relationship between
the phase shift and the output voltage [1], [3]. This model
approximates the high-frequency ac variables by the first
harmonic [4] and has high fidelity at lower frequencies with
the control of the dc voltage being almost perfect. However,
such models are not able to accurately predict the state at the
different mode transitions within one switching cycle, essential
for applications such as ZVS.
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To obtain higher granularity, sampled-data modeling is a
well known alternative to produce a discrete time model of
power converters [5] and has been extended to DAB by
incorporating auxiliary electromagnetic interference (EMI) fil-
ters [6]. The resulting solution of the small signal perturbation
is obtained by a linear approximation of the Jacobian with
respect to initial condition, changes in terminal voltage and
the control variable. Our proposed model, however does not
use any linear approximation, and describes the exact matrix
solutions to the small signal perturbations of the system. A
similar approach based on bilinear approximation of the state
transition matrix has been used in [7]. Models like [7] rely
on successively appending the state transition matrix with the
corresponding dwell times in each of the transition modes.
However, as shown in [8], the failure to incorporate the change
in dynamics due to switching in the small signal model can
lead to errors and controllers based on these faulty models can
drive the state trajectories unstable.

In [9], the state transition matrix is combined with super-
position of phase shift perturbations to develop a small-signal
model for DAB which is in line with the model obtained in
this paper. While the method in [9] generates a correct lower
order model, it is difficult to generate higher order models or
adjust to other PWM control techniques. As the complexity
of PWM techniques and model order increases, the method in
[9] of adding the resultant perturbations to obtain the complete
model becomes extremely tedious. The method proposed in
this paper inherently handles this problem by extending the
state variable to include the control variable as the n + 1th

state, in addition to the usual state variables that describe the
dynamics of the DAB.

Our method applies Filippov’s method for dc–dc converters
to DAB [10]. The underlying method relies on the saltation
matrix to compute a jump update of the state transition matrix
when the operating mode of the dc–dc converter changes.
This method has been used to determine stability of other
classes of dc–dc converters like interleaved boost converters
[11], voltage-mode-controlled buck converter [12], and buck
converters [8]. The use of the saltation matrix provides a
mathematical structure when calculating the state transition
matrix that easily extends to higher order models of DAB. An
important contribution of this paper is including the phase shift
control parameter ϕ as a state variable when computing the
linearization of the system. Including the control parameter ϕ
in the state of the model, we construct a transfer function
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Figure 1. The switched model of DAB is shown with the passive and active components. The phase shift ϕ is applied to the secondary bridge. The dc load
resistance, lumped with the capacitor’s parasitic parallel resistance is represented as rC. The current id represents an active load like an inverter, which can
be modelled as a current source.

between the control signal ϕ and the system state of DAB on
a cycle-to-cycle basis.

The paper is organized as follows. In Sec. II a brief
background of hybrid dynamic systems as applicable to DAB
is presented. Sec. III provides the main result of the paper, a
derivation of the cycle–by–cycle small–signal model of DAB;
followed by a verification of the model in Sec. IV using
PLECS.

II. BACKGROUND ON HYBRID DYNAMICAL SYSTEMS
THEORY

Hybrid dynamical systems describe systems where the un-
derlying continuous dynamics change at discrete instances.
Switched linear systems are a subset of hybrid dynamical
systems where the dynamics for each discrete mode is linear.
The dynamics of DAB, with discrete changes in the underlying
linear dynamics of the continuous state, can be modeled as a
switched linear system. A brief overview of the dynamics and
relevant results for switched systems follows, a more thorough
overview is provided in [13], [14].

Let x ∈ Rn denote the state of the system with dynamics
ẋ(t) = fk(t, x(t)), where fk : Rn → Rn is globally Lipschitz
continuous and k ∈ {1, . . . , N} denote the discrete mode of
the system with N ∈ N. The switching surface between two
modes k and j is given by G(t) = {x | gk,j(t, x) = 0} ⊂ Rn,
where gk,j : R+ × Rn → R and at least once differentiable.
When x(t) ∈ Gk,j(t) the discrete mode of the system changes
from j to k.

In a continuous linear system, the result of a perturbation on
the initial condition of a nominal trajectory x(t) is calculated
with the state transition matrix Φ. In order to calculate a
linearization for a switched system, the discrete changes in
the underlying dynamics must be accounted for. The saltation
matrix, originally described in [15], calculates the first order
effects of switching the discrete mode and hence changing
the continuous dynamics at a different time than the nominal
trajectory due to a perturbation in the continuous state. The

saltation matrix Sk,j for switching between discrete modes j
and k is [16, Sec. 3]

Sk,j(t, x) = I +

(
fk(t, x)− fj(t, x)

)
Dgk,j(t, x)

Dgk,j(t, x)fj(t, x) +
∂gk,j

∂t (t, x)
, (1)

where t, x are the time and state when the switching surface
is reached, gk,j(t, x) = 0 and Dgk,j is the derivative of the
switching function gj,i with respect to the state x. A key
criteria for the use of saltation matrix is the trajectory x(t)
is transverse to the switching surface in the (t, x) plane at the
point of intersection, Dgk,j(t, x)fj(t, x) +

∂gk,j

∂t 6= 0.
With this terse background on saltation matrices, we now

proceed to model DAB as a switched linear system.

III. DISCRETE TIME MODELING OF DUAL ACTIVE BRIDGE

DAB uses simple phase-shift modulation since it (theoreti-
cally) guarantees ZVS when the ratio of the output voltage to
the input voltage is exactly equal to the transformer turns ratio.
The DAB circuit in Fig. 1 utilizes PSM where the secondary-
side phase shift ϕ is defined relative to the primary-side switch
signal. For a given phase shift ϕ between high frequency ac
voltages of the two bridges, the exact power balance equation
is given by

n2v2
inϕ (π − ϕ)

Lπωsw︸ ︷︷ ︸
Input power

=
(nvinϕ

Lωsw

)2 (
1− 2ϕ

3π

)
rL

︸ ︷︷ ︸
Loss in inductor ESR

+

n2v2
in

rC
+ nvinid

︸ ︷︷ ︸
Power Output

, (2)

where n is the transformer turns ratio, L is the inductance and
rL the equivalent series resistance of the secondary-side mag-
netics which can be extended without loss of generalization to
also include the device on state resistances. The net resistive
load at the output (the parallel combination of the capacitance
parasitic resistance and load resistor) is denoted by rC, ωsw is
the switching frequency and id is the equivalent current source
model for an active load like an inverter.
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We use (2) to solve for a particular phase shift ϕ that
ensures dc transformer mode of operation of the DAB, thereby
regulating the output voltage vC to be equal to nvin. This
defines a nominal state trajectory in every switching cycle with
discrete mode transitions in it as shown in Fig. 2 (b).

Next, we construct a linearization about the nominal equilib-
rium trajectory. The linearization describes to first order how
perturbation of the state and control parameter at the start of a
cycle map to the perturbed values at the start of the next cycle.
Letting x denote the nominal state of the system at the start
of a cycle, and ϕ denote the control parameter that achieves
this nominal state, we seek to find the mapping

∆x[`+ 1] = F∆x[`] +G∆ϕ[`], (3)

with
∆x[`] = x[`]− x, ∆ϕ[`] = ϕ[`]− ϕ, (4)

and x[`], ϕ[`] being the state and control parameter respec-
tively at the start of the cycle. In dynamical system terminol-
ogy, we aim to construct the first order approximation of the
Poincaré map [17, Chp. 10].

A. Switched Linear System Formulation

As a first step towards linearization, we define the dynamics
as a switched linear system. The two main components are (1)
defining the set of linear dynamics and (2) defining the discrete
transitions between the linear dynamics. We begin by defining
the state vector as x =

[
iL vC

]T
with iL the inductor current

and vC the output voltage and indicated in Fig. 1. The state x
evolves with the dynamics

diL
dt

=
s1nvin

L
− s2vC

L
− rLiL

L
,

dvC

dt
=
s2iL
C
− vC

rCC
− id
C
,

(5)

where the switching signals s1, s2, shown in Fig. 2(a), are
defined as

s1(t) =

{
1, 0 ≤ ωt < π

−1, π ≤ ωt < 2π
, (6)

s2(t) =

{
1, ϕ ≤ ωt < π + ϕ

−1, 0 ≤ t < ϕ and π + ϕ ≤ ωt < 2π.
(7)

It follows there are four discrete modes consisting of linear
dynamics in the system.

Assuming vin and id remain constant over a cycle, the
dynamics in each mode can succinctly be written as

ẋ(t) = Akx+Bku`,

where Ak ∈ R2×2 and Bk ∈ R2 are the matrix representation
of the state dynamics in (5) and u` =

[
vin id

]T
. Explicitly

writing out the equation gives

d

dt

[
iL
vC

]

︸ ︷︷ ︸
ẋ

=

[− rL
L − s2L
s2
C − 1

rCC

]

︸ ︷︷ ︸
Ak

[
iL
vC

]

︸︷︷︸
x

+

[
s1n
L 0

0 − 1
C

]

︸ ︷︷ ︸
Bk

[
vin
id

]

︸ ︷︷ ︸
u`

. (8)

DAB operation begins in mode k = 1 with the switching
signal (s1, s2) = (1,−1). This switching signal indicates the
MOSFETs M1,M4 are turned on in the input bridge causing
vp to be equal to the input voltage. Meanwhile in the output
bridge, the MOSFETs M6,M7 are turned on, causing the
secondary bridge voltage vs to be equal to −vC. The other
mode dynamics can be similarly explained. The output voltage
vC is controlled at nvin causing the inductor current iL to be
trapezoidal.

The scalar control variable ϕ for DAB changes the relative
switching phase between modes k = 1 to k = 2 and
modes k = 3 to k = 4.1 To construct a linearization with
the scalar control variable included, we augment the existing
state vector with a parameter for the phase shift ϕ. As the
phase shift does not change during the cycle, the dynamics of
the control parameter are described with ϕ̇ = 0. The resulting
state of the system is then x̃ =

[
iL vc ϕ

]T
. The switching

surfaces between each of the modes are

g2,1(t, x̃) = 2πt/Tsw − ϕ, (9)
g3,2(t, x̃) = 2πt/Tsw − π, (10)
g4,3(t, x̃) = 2πt/Tsw − (π + ϕ), (11)
g1,4(t, x̃) = 2πt/Tsw − 2π. (12)

For each mode k ∈ {1, 2, 3, 4}, tk denotes the switching time
such that the switching function, gk+1,k (tk, x̃) = 0 and a
change from mode k to mode k+1.As each of the continuous
mode dynamics is linear, the state transition matrix Φk ∈ R3×3

is given by2

Φk = exp

([
Ak 02×1

01×2 0

]
(tk+1 − tk)

)
(13)

captures the necessary linearization, where exp (·) denotes the
matrix exponential.

B. Computing the First Order Model

The saltation matrix for a transition between the present
discrete mode, k, and its immediate next discrete mode, k+1,
is reproduced from (1) as,

Sk+1,k(t, x̃) = I +

(
fk+1(t, x̃)− fk(t, x̃)

)
Dgk+1,k(t, x̃)

Dgk+1,k(t, x̃)fk(t, x̃) +
∂gk+1,k

∂t (t, x̃)
.

(14)
The state dynamics fk(t, x̃) for a particular discrete mode k
is written as,

fk(t, x̃) =

[
Ak 02×1

01×2 0

]
x̃+

[
Bk

01×2

]
u`. (15)

Dgk+1,k(t, x̃) is the derivative of the switching function
gk+1,k(t, x̃) at the point on the switching surface (t, x̃). As
an example, evaluated for the first transition between mode
k = 1 and k = 2, Dg2,1(t, x̃) =

[
0 0 −1

]T
. It can be

1The switching phase between mode k = 2 to k = 3 is fixed at π; likewise
fixed at 2π for switching between mode k = 4 to k = 1.

2A matrix with all 0 elements of size m × n is denoted with 0m×n and
the identity matrix of size n× n denoted with In×n.
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Figure 2. For each of the mode transitions k we draw the primary and secondary side transformer voltages and inductor current in (a). The nominal phase
shift is ϕ and the perturbation in the phase shift ∆ϕ is used to obtain the perturbed state trajectory as shown in dotted lines. For any state variable x[`], the
value of the state variable at the end of one switching cycle can be obtained by the product of matrix exponentials and saltation matrices as shown in (b).

evaluated similarly for the other mode transitions.

In the next step, we evaluate the time derivative of the
switching surface gk+1,k(t, x̃). This derivative for the first
mode transition is

∂g2,1(t, x)

∂t
=

2π

Tsw
, (16)

and is equal for all other mode transitions. Once all the
variables have been obtained, we substitute them in (14) and
obtain the saltation matrix in terms of the system matrices as

Sk+1,k (tk, x̃) =

[
I2×2

(Ak+1−Ak)x+(Bk+1−Bk)u`

−2π/Tsw

01×2 1

]
,

(17)
for k ∈ {1, 3}. As neither g3,2 nor g1,4 depend on the state x̃,
Dg3,2(t, x̃) = Dg1,4(t, x̃) = 0 giving S3,2 = S1,4 = I . Incor-
porating the saltation matrix as in Fig. 2(b), the linearization
for one period is

Φ = S1,4Φ4S4,3Φ3S3,2Φ2S2,1Φ1

= Φ4S4,3Φ3Φ2S2,1Φ1,
(18)

where Φ ∈ R3×3. The resulting matrix is sometimes referred
to as the monodromy matrix. Carrying out the calculation
yields

Φ =

[
F G

01×2 1

]
, (19)

with F ∈ R2×2 and G ∈ R2×1. As Φ∆x̃[`] = ∆x̃[`+ 1], we
obtain the desired linearization

∆x[`+ 1] = F∆x[`] +G∆ϕ[`], (20)

where ∆x and ∆ϕ are as described in (4).

C. Computing the Transfer Functions

The small signal model obtained in (20) is useful for state
space based controller design like linear quadratic regulator or
controller based on norm minimization techniques like H2 and
H∞ control. For classical control techniques like loop shaping
design, constructing bode plots from (20) is more useful.

As an important application, dc-link voltage control of
DAB requires the transfer function between the perturbation
in output voltage ∆vC and the perturbation in phase shift ∆ϕ.
We obtain H∆vC,∆ϕ by taking the Z-transform of (20),

H∆vC,∆ϕ = C(zI − F )−1G, (21)

where C =
[
0 1

]
. To verify the proposed modeling strategy,

we also derive the transfer function between the perturbation in
inductor current, ∆iL, sampled at the beginning of transition
from mode k = 4 to mode k = 1 and the perturbation in
phase shift, ∆ϕ. This transfer function, H∆iL,∆ϕ is similar to
(21) with C changed to C =

[
1 0

]
. We verify the transfer

functions using the Impulse Response Analysis tool of PLECS.
Once the transfer functions are obtained, the controller design
is straight-forward and extensively covered in literature [4],
[6], [9].

IV. RESULTS AND DISCUSSION

To validate the small signal model obtained by the saltation
matrix, we setup a PLECS simulation reflecting the theoretical
model shown in Fig. 1 with parameters given in Table I. The
obtained discrete small signal model from (20) is

F =

[
0.9260 0.0055
0.0007 0.9990

]
, G =

[
−0.8560
0.4851

]
. (22)

To validate elements of the G matrix, we perturb the input and
observe the perturbation in the corresponding output. Fig. 4
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Figure 3. Bode plots of the transfer function calculated using the modelling approach in Sec. III closely match the corresponding bode plot generated using
PLECS. The two bode plots presented are of the transfer function ∆iL(s)/∆ϕ(s) in (a) and ∆vC(s)/∆ϕ(s) in (b).
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Figure 4. The numerically calculated G (22) is validated by perturbing the switching phase ϕ by a nonzero amount in a PLCES simulation. A nonzero
perturbation of the switching phase ϕ occurs in the cycle starting at time 0.1 s and the change in the two states, the inductor current iL and the capacitor
voltage vC, at the start of this cycle and the start of the subsequent cycle starting at t = 0.10001 s is measured. While not necessary for the validation, the
plots show the inductor current iL rapidly returning to steady state after the phase perturbation is removed and the slower response of the capacitor voltage
vC. The PWM pulses show the gate signals of switches M1 and M5 as shown in Fig. 1.

demonstrates this validation process where the phase ϕ is
perturbed. First the system reaches steady state by time 0.1 s
with a nominal phase shift ϕ calculated by the power balance
equation (2). Then, we apply a small perturbation to the phase
shift ∆ϕ over a single cycle starting at 0.1 s. We measure the
effect of the perturbation on the two state variables, inductor
current iL and capacitor voltage vC, at the start of the next
cycle 0.10001 s by computing ∆iL[`+ 1] and ∆vC[`+ 1], and
then calculate

G =

[
∆iL[`+ 1]/∆ϕ
∆vC[`+ 1]/∆ϕ

]
. (23)

The results from (23) is then compared with (22). A similar
procedure can be carried out to validate the elements of the
F matrix by perturbing the initial states.

Another way of verifying the model is to obtain the bode
plot of the transfer function as described by (21) and compare
it with the bode plot generated by the impulse response tool
of the PLECS. With the existing simulation which mimics
our theoretical model and parameters from Table I. Fig. 3(a)
shows the close match of the bode plot of the transfer function
between the perturbation in inductor current at the beginning
of mode k = 1 to the perturbation in phase shift, as predicted
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Table I
DAB SYSTEM PARAMETERS

Symbol Description Value Units

vin Input Voltage 200 V
L Filter inductance 26 µH
rL Inductor ESR 0.2 Ω
C Filter capacitance 200 µF
n Transformer turns ratio 1 –
rC Load resistance 53.2 Ω
id Load current 0 A

by the proposed model (in red) to the impulse response of
the PLECS model (in blue). The transfer function of the
perturbation in capacitor voltage to the perturbation in phase
shift shown in Fig. 3(b) also shows a good match between the
two bode plots.

A. Symbolic Representation of the Linear Model

The main advantage of the proposed controller is to obtain
a small signal model of the perturbations of the state variable
with the perturbation of the control variable. So in a controller
synthesized based on LQR or pole placement, the reference
to the controller would only be the change in state variables
that we would like to observe. However, as the system adjusts
to the new reference, the new nominal trajectory now needs
to have the F and G matrices recomputed. In an online
power converter, it might not be computationally efficient to
implement (18).

One approach is to do a sensitivity analysis on the nominal
plant and try to observe how much do the elements of the F
and G matrix vary from its nominal computed values. Another
approach is to approximate (18) by substituting the first order
approximation for the matrix exponential exp(At) ≈ I + At
giving

F̂ =


 1− rLTsw

L (ϕ− 1
4 )
(
L−CrCrL
CL2rC

)
T 2

sw

(ϕ− 1
4 )
(
L−CrCrL
C2LrC

)
T 2

sw 1− Tsw
rCC




+O(T 3
sw)

(24)

Ĝ =

[
−nrLT

2
swvin

2πL2

nT 2
swvin(π−ϕ)
π2LC

]
+O(T 3

sw). (25)

Since we use a very high switching frequency to control the
DAB, Tsw is numerically very small and the errors accumu-
lated due to ignoring of higher order terms is also small. The
bode plots obtained from the actual model (20) and the one
approximated by F̂ and Ĝ line up very closely throughout the
frequency range from low frequency, 10−3 Hz, to the Nyquist
frequency, 0.5Tsw.

V. CONCLUSION AND FUTURE WORK

In this paper, we have obtained an accurate discrete time
model of DAB taking into account the switching dynamics

using saltation matrices. We validated the proposed modeling
approach by comparing the predictions from the model with a
commercial simulation software for both impulse response and
perturbation analysis. We also presented a symbolic expression
the approximates the model which can be used in real time. As
possible future work, the developed model can be used to to
construct state–space controllers like linear quadratic regulator
and minimal norm based controllers for DAB. An extension
in terms of modeling is also possible by incorporating more
state variables in this modeling framework.
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