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Abstract—Virtual oscillator control (VOC) is a time-domain
strategy for regulating the operation of grid-forming (GFM)
inverters. The premise of this method is to leverage the dynamics
of nonlinear oscillator circuits to realize controllers; the time-
domain nature of the resulting implementation is starkly different
from classical droop control methods. This paper considers VOC
realized with the dynamics of the Andronov-Hopf oscillator,
a second-order nonlinear dynamical system that enables GFM
inverters to be dispatched and generate low-harmonic outputs
while not compromising dynamic performance. Leveraging an
equilibrium analysis of the involved dynamics and small-signal
models, we put forth a side-by-side comparison of dynamic per-
formance and small-signal stability with classical droop control.
The results demonstrate superior dynamic performance of VOC,
and broadly, the paper furthers efforts focused on modeling and
analysis of this general class of GFM controllers.

I. INTRODUCTION

Inverter controllers that are capable of sustaining system

frequency and voltage profile in the absence of conven-

tional fossil-fuel-powered generation have found significant

recent interest given the accelerating rate at which renewables

continue to be deployed. This class of controllers is often

referred to as grid-forming (GFM), since it allows for the

realization of power grids with decentralized primary con-

trol and power sharing—features that are commonplace with

synchronous-generator based systems today. In this paper, we

focus on a GFM controller that is built around a second-

order nonlinear dynamical system called the Andronov-Hopf

oscillator (AHO) [1], [2]. This admits a nonlinear circuit

realization, and in fact, is one of many that have been proposed

recently to realize GFM controllers under the so-called Virtual

Oscillator Controller (VOC) paradigm [3]–[5]. (Other notable

instances include Van der Pol [6] and Dead-zone [7] circuits.)

We compare the dynamic performance of the AHO-based

GFM controller with the classical droop control method [8]–

[10] after formulating small-signal models for each control

type. By uncovering the impact of intrinsic physical attributes,

control parameters, and external inputs on system stability and

dynamic performance, this analysis advances the state-of-the-

art in modeling and design of GFM inverter systems.

This material is based upon work supported by the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under
Solar Energy Technologies Office (SETO) Agreement Number EE0009025,
the National Science Foundation through grant 1509277, and Washington
Research Foundation.

Droop control is widely recognized as the default control

strategy for GFM inverters. Of relevance to the line of work

in this paper, there are several noteworthy efforts in large- and

small-signal models for droop control [11], [12] and associated

system-design considerations [13], [14]. Interestingly, VOC-

based controllers can be engineered for droop-like behavior

in steady state with (close to) linear trade-offs in active-power

versus frequency and reactive-power versus voltage [15], [16].

On the other hand, the real-time behavior of VOC is funda-

mentally different since it is engineered from dynamics that

are innately nonlinear and implemented entirely in the time

domain. It is, in fact, this time-domain nature of VOC-based

controllers that enables swift responses of the corresponding

GFM inverters in the face of disturbances. Previous efforts

have compared dynamic performance of VOC realized with

Van der Pol oscillator dynamics and droop control with appro-

priate small-signal models [17]. This work provides a mean-

ingful extension to such comparative studies by examining

VOC realized with AHO dynamics alongside droop control.

Compared to other VOC implementations based on, e.g., Van

der Pol oscillators, AHO-based VOC implementations offer

better harmonic performance and they can be dispatched, in

the sense that their nominal active and reactive-power outputs

are easily tunable. Therefore, they have been the subject of

several recent investigations [18]–[20], further justifying the

focus of this effort.

Our setup consists of a three-phase GFM inverter connected

to an external network through an inductive filter. We begin

by discussing the nonlinear dynamical models for the AHO-

based VOC controller and an equivalent droop implementa-

tion. Following this, we precisely uncover the equilibria cor-

responding to the dynamical models for each controller type

and analytically establish corresponding small-signal models

in each case. With these models in place, we undertake a

variety of numerical simulations. First, for a nominal set of

design parameters for which the steady-state droop behavior

of both control strategies match, we illustrate that the AHO-

based controller offers a superior dynamic response due to its

speed and no overshoot. Next, we investigate the impact of:

i) the R/L ratio corresponding to the output filter (and inter-

connecting transmission lines), and ii) active-power setpoint

on eigenvalues of the linearized models. Finally, our small-

signal models are validated with nonlinear simulations.

The remainder of this paper is organized as follows: In
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Figure 1: Illustrating frequently referenced voltage and current signals in

pertinent reference frames.

Section II, we overview modeling preliminaries and the dy-

namic models for AHO and droop control. Section III presents

the equilibria and small-signal models for each controller.

Numerical simulations follow in Section IV, and we conclude

the paper in Section V with a few directions for future work.

II. PRELIMINARIES AND GFM CONTROLLER MODELS

In this section, we first discuss mathematical and modeling

preliminaries. Next, we overview the dynamic models for the

two GFM controllers.

A. Preliminaries

The system under study is a three-phase GFM voltage-

source inverter (VSI). The inverter includes a dc voltage

source, vdc, a hex-bridge converter, and an output inductive

filter with inductance Lf and resistance Rf (these may also

include line impedances, if any). Recall that the two GFM

strategies we examine are VOC realized with the dynamics of

an Andronov-Hopf Oscillator and droop control. The system

architectures with these control types are depicted in Figs. 2(a)

and 2(b), respectively. The three-phase voltages corresponding

to the external network and the inverter terminals are denoted

by eabc and vabc, respectively. In the αβ reference frame, we

can represent the network and inverter-terminal voltages as:{
eα =

√
2E cosωet

eβ =
√

2E sinωet,

{
vα =

√
2V cosωit

vβ =
√

2V sinωit.
(1)

Implicit in the definitions above is that the amplitudes of the

two voltages are denoted by
√

2E,
√

2V ; and frequencies are

denoted by ωe, ωi. In what follows, we will also find it useful

to define corresponding voltage phase angles by θe = ωet,
θi = ωit, respectively. To facilitate analysis, we will reference

the angle difference δ = θi − θe in subsequent developments.

The inverter output currents (referred interchangeably as line

currents) in the αβ reference frame are denoted by iα, iβ ,

respectively, and in the local dq reference frame by id, iq,

respectively. The dynamics of id and iq are given by [21][
i̇d
i̇q

]
=

[
−Rf

Lf
ωi

−ωi −Rf

Lf

][
id
iq

]
+

1

Lf

[√
2V − ed
0 − eq

]
, (2)

where ed, eq correspond to the dq reference-frame represen-

tations of the external network voltage. Given the definitions

and notation above, we can express:[
ed
eq

]
=

[
cos δ sin δ
− sin δ cos δ

] [√
2E
0

]
. (3)

The instantaneous active and reactive power at the inverter

terminals are denoted by P and Q, and they are defined as

P =
3

2

√
2V id, Q = −3

2

√
2V iq. (4)

Figure 1 illustrates several of the quantities referenced above.

B. AHO Controller

The AHO controller, depicted in Fig. 2(a), is composed

of three main parts. First is a resonant LC tank with nat-

ural frequency ωnom = 1/
√
LC, characteristic impedance

ε =
√
L/C, and corresponding state variables [vC, iL]�. Next,

there are two negative conductances −σ and −ε2σ which

systematically inject energy into the circuit to sustain oscil-

lations. Finally, we have nonlinear state-dependent voltage

and current sources, denoted by gv := εα(v2C + ε2i2L)εiL and

gi := α(v2C + ε2i2L)vC, respectively.

A detailed description of the system dynamical model and

design strategy are available in [2]. In what follows, we

provide a broad overview pertinent to the comparative analysis

with droop control. The differential equations that govern the

evolution of vC and iL are given by

Cv̇C = −iL − gi + σvC − u1, (5a)

Li̇L = vC − gv + σε(εiL) − εu2, (5b)

where u1, u2 are derived from the difference between mea-

sured line currents and setpoints in the αβ domain:[
u1

u2

]
= κi

[
cosϕ − sinϕ
sinϕ cosϕ

]
︸ ︷︷ ︸

=:R(ϕ)

[
iα − i�α
iβ − i�β

]
. (6)

The rotation matrix referenced above, R(ϕ), facilitates tuning

the steady-state droop laws; with the value ϕ = π/2, we obtain

voltage reactive-power and frequency active-power trade-offs.

The constant κi is a current-scaling gain. The PWM modula-

tion signals, vα, vβ are obtained by scaling vC and εiL by the

fixed gain κv. The voltage dynamics follow as

[
v̇α
v̇β

]
=

⎡
⎢⎣

ξ

κ2
v

(
2V 2

nom − V 2
) −ωnom

ωnom
ξ

κ2
v

(
2V 2

nom − V 2
)
⎤
⎥⎦[vαvβ

]

− κv

C
κiR(ϕ)

[
iα − i�α
iβ − i�β

]
, (7)

where
√

2V := (v2α+v2β)
1
2 (thereby rendering the above model

to be nonlinear), Vnom :=
√
σκ2

v/(2α) is the nominal inverter

voltage setpoint, and ξ := α/C is a gain which influences

convergence speed. The dynamics in (7) can be written in
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Figure 2: Voltage source inverter with (a) Andronov-Hopf oscillator controller (inset with dashed box), (b) droop controller. In (a), the current setpoints are

obtained from the active- and reactive-power setpoints by solving algebraic equations housed in the “current reference” block (these equations are similar

to (4)). In (b), the “power calculation” block calculates the active- and reactive-power using (4), the “low-pass filter” block comprises two low-pass filters

with cutoff frequency of ωc, the “droop control” block denotes the droop relationships given in (10), and the “voltage generator” block generates the PWM

modulation signals in the αβ reference frame given corresponding polar-coordinate inputs.

polar coordinates, i.e., with voltage V and angle θi as states,

in the following manner:

V̇ =
ξ

κ2
v

V
(
2V 2

nom − 2V 2
)− κvκi

3CV
(Q−Q�), (8a)

θ̇i = ωi = ωnom − κvκi

3CV 2
(P − P �), (8b)

where P �, Q� denote the active- and reactive-power setpoints,

and P,Q denote the active- and reactive-power outputs mea-

sured at the inverter terminals (4). The setpoints bias droop

behavior, and there is flexibility in their choice with the con-

straint that they should adhere to the inverter apparent-power

rating. The phase dynamics can be equivalently expressed with

the power angle δ as follows

δ̇ = ωnom − ωe − κvκi

3CV 2
(P − P �). (9)

C. Droop Controller

The implementation of droop control is depicted in

Fig. 2(b). At the core are the following linear trade-offs:

V = Vnom −mq(Q−Q�), (10a)

ωi = ωnom −mp(P − P �), (10b)

where P ,Q are filtered active- and reactive-power values mea-

sured at the inverter terminals (we discuss this shortly), and

mq,mp are determined by the voltage- and frequency-droop

specifications. For instance, if we assume a 5% voltage droop

and 0.5 Hz frequency droop while the inverters are running at

rated power Srated, then it follows that mq = 0.05Vnom/Srated

and mp = 2π0.5 Hz/Srated. To reject double-frequency pul-

sating components that arise from imbalances and switching

ripple (which are inescapable in practical systems) from the

power calculations, a low-pass (LP) filter is required. In this

paper, we adopt a first-order LP filter, although, the analysis

presented readily generalizes to other filters. The dynamics of

the filtered active- and reactive-power, denoted by P and Q,

respectively, can be written as

Ṗ = ωc(P − P ), Q̇ = ωc(Q−Q), (11)

where ωc is the cut-off frequency which typically ranges from

several Hz to tens of Hz. In general, the LP filter will hinder

control responsiveness as the filtered quantities are leveraged

inside the droop controller. Therefore, the selection of the cut-

off frequency, ωc, is an important design choice and it presents

an important trade-off between power-filtering performance

and system-transient response.

The dynamics of the terminal voltage amplitude V and angle

θi in (10) are given by:

V̇ = −mqQ̇ = mqωc(Q−Q�), (12a)

θ̇i = ωnom −mp(P − P �). (12b)

As with the AHO controller, we will find it useful to express

the phase dynamics with the power angle δ as follows

δ̇ = ωnom − ωe −mp(P − P �). (13)

III. EQUILIBRIA AND SMALL-SIGNAL MODELS

In this section, we derive the steady-state equilibria corre-

sponding to the system dynamical models composed of the
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TABLE I

SMALL-SIGNAL MODELS FOR AHO AND DROOP CONTROL.

Jacobian matrix, A

AHO

⎡
⎢⎢⎢⎢⎢⎢⎣

0
κvκiid,eq√

2CV 2
eq

− 2κvκiP
�

3CV 3
eq

− κvκi√
2CVeq

0

0 ξ
κ2
v
(2V 2

nom − 6V 2
eq) − κvκiQ

�

3CV 2
eq

0 κvκi√
2C√

2E sin δeq
Lf

κvκiid,eqiq,eq√
2CV 2

eq

− 2κvκiid,eqP
�

3CV 3
eq

+
√
2

Lf
−Rf

Lf
− κvκiiq,eq√

2CVeq
ωnom − kvkiid,eq√

2CVeq
+ κvκiP

�

3CV 2
eq√

2E cos δeq
Lf

−κvκii
2
d,eq√

2CV 2
eq

+
2κvκiid,eqP

�

3CV 3
eq

−ωnom +
√
2κvκiid,eq
CVeq

− κvκiP
�

3CV 2
eq

−Rf

Lf

⎤
⎥⎥⎥⎥⎥⎥⎦

Droop

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −mp

0 −ωc + 3√
2
mqωciq,eq 0 3√

2
mqωcVeq 0

√
2E sin δeq

Lf

√
2

Lf
−Rf

Lf
ωnom −mp(P eq − P �) −mpiq,eq√

2E cos δeq
Lf

0 −ωnom + mp(P eq − P �) −Rf

Lf
mpid,eq

0 3√
2
ωcid,eq

3√
2
ωcVeq 0 −ωc

⎤
⎥⎥⎥⎥⎥⎥⎦

line dynamics and the controller dynamics. Before examining

the two GFM controller types individually, we note that the

equilibria, id,eq, iq,eq corresponding to the line dynamics in (2)

are given by the solution of:

−Rf

Lf
id,eq + ωiiq,eq +

√
2

Lf
(Veq − E cos δeq) = 0, (14a)

−Rf

Lf
iq,eq − ωiid,eq +

√
2

Lf
(E sin δeq) = 0, (14b)

where Veq, δeq are the terminal voltage amplitude and phase-

angle equilibria. In what follows, we analyze the AHO and

droop controller dynamics in steady state. This will tease

out the requisite algebraic equations—that alongside (14a)–

(14b)—facilitate the solution for Veq, δeq, id,eq, iq,eq. (Droop

control involves additional states attributed to the low-pass

power filters.) Small-signal dynamic models are then obtained

by linearizing the original models around the equilibria.

A. AHO Controller

To obtain the full set of equilibria, we set V̇ = 0 and δ̇ = 0
in (8a) and (9). This yields the following algebraic equations

2ξ

κ2
v

Veq

(
V 2
nom − V 2

eq

)
+

κvκi

3CVeq

(
3

2

√
2Veqiq,eq + Q�

)
= 0 (15a)

ωnom − ωe − κvκi

3CV 2
eq

(
3

2

√
2Veqid,eq − P �

)
= 0. (15b)

Solving (14a), (14b), (15a), and (15b) yields the equilibria:

Veq, δeq, id,eq, iq,eq. (We refrain from commenting on exis-

tence and number of solutions and reserve this for future

work.) Introduce the following state variables that capture

the dynamics of small perturbations in states of the AHO

controller around their equilibria:

Δδ = δ − δeq, ΔV = V − Veq,

Δid = id − id,eq, Δiq = iq − iq,eq.

The state vector of the small-signal model is defined as

Δx = [Δδ,ΔV,Δid,Δiq]
�. The dynamics of the small-signal

model are obtained by linearizing (2), (8a), and (9) around the

equilibria. The small-signal model is compactly represented

as Δẋ = AΔx, where A ∈ R
4×4 is the Jacobian matrix

of the nonlinear dynamical model evaluated for the equilibria

referenced above. The entries of A are reported in Table I.

B. Droop Controller

To obtain the full set of equilibria, we examine (10a), (13),

and the active-power filtering dynamics from (11) in steady

state. This yields the following algebraic equations:

Veq − Vnom −mq

(
3

2

√
2Veqiq,eq + Q�

)
= 0, (16a)

ωnom − ωe −mp

(
P eq − P �

)
= 0, (16b)

P eq − 3

2

√
2Veqid,eq = 0. (16c)

Solving (14a)–(14b), and (16a)–(16c) yields the equilibria:

Veq, δeq, id,eq, iq,eq, P eq. Note that the filtered reactive power

is linearly related to the terminal voltage, and therefore,

we exclude it in the small-signal model. We introduce the

following state variables:

Δδ = δ − δeq, ΔV = V − Veq,

Δid = id − id,eq, Δiq = iq − iq,eq, ΔP = P − P eq.

The state vector of the small-signal model is defined as Δx =
[Δδ,ΔV,Δid,Δiq,ΔP ]�. The dynamics of the small-signal

model are obtained by linearizing (2), (11), (12a), and (13).

The small-signal model is compactly represented as Δẋ =
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AΔx, where A ∈ R
5×5 is the Jacobian matrix of the nonlinear

dynamical model evaluated for the equilibria referenced above.

The entries of A are reported in Table I.

IV. NUMERICAL SIMULATIONS

We perform numerical simulations to characterize small-

signal stability of the AHO and droop controllers leveraging

the models in Section III. We begin with the comparison of

the transient response between those two controllers. Next,

we perform eigen-analysis of the small-signal models while

varying the Rf/Lf ratio and the active-power setpoint, P �.

Lastly, we validate our analysis by simulating the nonlinear

dynamics. The parameters of the controllers are listed in Ta-

ble II. The detailed procedure to determine the AHO controller

parameters is available in [2]. The inverter is assumed to be

rated at Srated = 1200W. For the droop controller, the cut-

off frequency of the LP filter is selected to be 30 Hz to filter

out the switching ripples and 120 Hz harmonics caused by

potential imbalances in the three-phase network.

A. Transient Response Comparison
We consider the case when Rf/Lf = 533.3 Hz, (Lf =

1.5 mH and Rf = 0.8 Ω), P � steps up from 0 to 500 W while

Q� = 0 VA. For this case, the eigenvalues of the Jacobian

matrix A are plotted in the background of the top pane of

Fig. 3. The largest real parts of the eigenvalues are −104 and

−57 for AHO and droop controllers, respectively. This tells

us that the AHO has faster response than the droop controller.

This is validated by the plot of the step response at the front

of the top pane of Fig. 3 and the plots of the filter currents at

the bottom pane of Fig. 3.

B. Impact of Varying Rf/Lf Ratio
The Rf/Lf ratio plays a key role in influencing the eigen-

values for the GFM systems. We will show that there is a

critical Rf/Lf value identifying the stability of both VOC and

droop control. We can observe from Fig. 4 that in a purely

inductive network (Rf/Lf = 0), the system is unstable due

to two RHS eigenvalues. While increasing Rf/Lf , we can see

that the system becomes stable when Rf/Lf > (Rf/Lf)cr.
We conclude that the filter dynamics play an important role

in identifying the stability of such a system.
We swept the value of Rf/Lf for AHO and droop control

within the same range, and we obtain the eigenvalues as plot-

ted in Fig. 4. We observe that Rf/Lf has the following impacts

on stability: a small Rf/Lf value may cause instability. The

critical Rf/Lf values for the AHO and droop controllers are:

(Rf/Lf)cr,AHO ≈ 180 Hz and (Rf/Lf)cr,droop ≈ 173 Hz.

TABLE II

PARAMETERS FOR THE AHO AND DROOP CONTROLLERS.

AHO Controller Droop Controller

κv = 120 V, κi = 0.24 V/W mp = 2.6× 10−3 V/W

ξ = 15 /sV2 mq = 5.0× 10−3 rad/sVar

C = 0.2679 F, L = 26.268 μH ωc = 2π30 rad/s

0

4.0

4.0−

[pu],abci

0 1.0 2.0 3.0 4.0[s],t 0 1.0 2.0 3.0 4.0[s],t

0

0

200

150

400

200−

150−300−450−600−750−

400−

}λ{Re

}
λ{

Im

Stability boundary

-104 -57

(b) droop control(a) AHO

step response

droop
AHO

droop

AHO

Figure 3: Transient response of AHO and droop controllers.

C. Impact of Varying Active Power Command

From the A matrix, we see that the power setpoint P � may

have impacts on the locations of eigenvalues to some extent. To

investigate this, we sweep P � from 0 to 1200 W while keeping

Q� = 0. The eigenvalues are plotted in Fig. 5. From the figure,

we can conclude that the eigenvalues change slightly along

with the P � variation. It implies that the power reference has

little impact on small-signal stability.

D. Validation with Nonlinear Dynamical Model

We validate the small-signal models and stability analysis

with nonlinear simulations. To this end, we select two Rf/Lf

values: Rf/Lf = 333.3 Hz and 133.3 Hz. Figure 6 shows

simulations of the terminal voltage amplitude V and angle δ
for both cases. We observe that the first case is stable while

the second case is not. The results demonstrate agreement with

the linearization and stability analysis.

0 100100−200−300−400−500− }λ{Re

Stability boundary

0

200

400

600

200−

400−

600−

}
λ{

Im increases
fL
fR

droop

AHO

AHO,cr

)
fL
fR

(
droop,cr

)
fL
fR

(

Figure 4: Eigenvalue analysis with different Rf/Lf ratios.
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Figure 6: Simulation results of terminal voltage amplitude V and phase-angle

δ when Rf/Lf = 333.3 Hz and 133.3 Hz for (a) AHO and (b) droop control.

V. CONCLUDING REMARKS & FUTURE WORK

This paper was focused on a comparative analysis of GFM

inverters programmed with Andronov-Hopf oscillator dynam-

ics and droop control. A small-signal model was formulated

for a single inverter to infinite bus system for both control

types. With this model in hand, the system eigenvalues were

studied while sweeping relevant parameters and setpoints.

These models were then validated via nonlinear time-domain

simulations. Future work will be focused on characterizing the

existence and uniqueness of the system equilibria as well as

experimental validations on inverter hardware.
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