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Abstract—Power electronics drives are complex systems with
coupled dynamical phenomena across electrical, control, and
mechanical domains. This mix of heterogeneous subsystems
obscures straightforward analysis, intuition, and design from an
integrated system perspective. In this paper, we first show that
each of these subsystems can be converted into an equivalent
circuit. Leveraging the universality of energy, we stitch together
a unified model where the closed-loop drive system is drawn
as a single equivalent circuit. Focusing on permanent magnet
synchronous machines with rotor saliency, drive control action
is depicted as an RLC circuit, torques from d and q axis
stator currents appear as current flows, electromechanical energy
conversion is portrayed using an ideal transformer, inertia mimics
capacitive storage, and the drivetrain also appears as a circuit. A
simulation is provided where an end-to-end closed-loop electric
vehicle system is modeled entirely as a circuit.

I. INTRODUCTION

Equivalent circuit models have a rich history in both elec-
trical [1] and mechanical engineering [2] disciplines. In both
fields, such models have been instrumental in understanding
how physical systems function. Despite that, equivalent circuit
models within the electrical and mechanical communities
have largely been pursued independently where use of mixed
electromechanical models is scant. The main contribution of
this paper lies in the key insight that such models can be
interwoven into a unified equivalent circuit. The key insight
that gives us unification is the universality of energy across all
known physical domains. This paper builds on recent work [3],
[4] where controllers are also cast as circuits, and ultimately
we show how an end-to-end closed-loop drive system with
speed and torque control can be modeled as a circuit.

Within the context of power electronics, equivalent circuit
models were first formulated for open-loop converter model-
ing [5], [6]. Eventually, impedance-based modeling was intro-
duced [7], [8] to include the effect of control feedback. Under
such a framework, the output port of a converter is represented
as a Norton or Thévenin equivalent and its impedances can be
used to characterize stability. One limitation of this approach
is that it gives a coarse two-element lumped circuit equivalent
where many aspects of the control loop(s) and converter are
either neglected, approximated, or obscured. Most recently,
converters and their controls have been analyzed through the
lens of circuit theory [3], [4]. By uncovering instances of

Kirchhoff’s laws within control loops, meshed multi-element
circuit models follow along with accompanying analytical
methods that link classical circuit and control theory.

Shifting focus to electromechanical systems, equivalent
circuits for machine electrical dynamics form some of the
earliest models used by the power community [9], [10]. In
this setting, the back electromotive force (EMF), rotor, and
stator are cast as a circuit model. On the other end, circuit
equivalents for mechanical systems have a rich history where
even James Clerk Maxwell uncovered connections [2], [11].
In such a setting, Newton’s equations are analogous to Kirch-
hoff’s Laws and allow for the derivation of circuits that exhibit
dynamics identical to the original system [12]. Reflecting on
this overview, it is clear that circuit equivalents have been
widely used within the electrical and mechanical engineering
communities. Aside from a few exceptions described below,
electromechanical systems are typically represented as distinct
electrical and mechanical subsystems despite being coupled.
In [13], electromechanical transducers are modeled as equiv-
alent circuits with transformers or gyrators linking physical
domains. The synchronous generator and dc machine models
in [14] and [15], respectively, outline coupled electrical-
mechanical circuit models via ideal transformers or coupled
dependent sources. Most relevant to the topic of drives, the
works in [16], [17] establish a circuit representation that links
electrical and mechanical dynamics by use of an ideal gyrator
between physical domains.

In this paper, we leverage conservation of energy to establish
a unified circuit framework that links control, electrical, and
mechanical domains. Unlike in [16], [17], electromechanical
conversion is captured via an ideal transformer as opposed
to a gyrator, and control loops are also interwoven into our
model. We also model machine saliency, which underpins flux-
weakening methods, and illustrate the reluctance torque contri-
bution in circuit format. A multiphysics circuit model, which
encompasses speed and torque controls, machine dynamics,
electromechanical energy conversion, and mechanical dynam-
ics, is illustrated in an electric vehicle (EV) case study. Section
II outlines the overall system structure. Circuit equivalents
for each domain are established in Section III. The unified
multiphysics model is derived in Section IV and simulations
are in Section V. Concluding statements are in Section VI.
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(a) switch-level drive system model (b) averaged synchronous frame model
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Fig. 1: A switched model of a drive system is shown in (a) and its averaged counterpart in the synchronously rotating reference frame is given in (b). In both
of these typical representations, the electrical, mechanical, and control subsystems are segregated from one another.

II. SYSTEM FUNDAMENTALS AND NOTATION

Consider the system in Fig. 1 which contains a three-phase
power electronics drive, a permanent magnet synchronous
machine with mechanical load, as well as inner and outer
control loops which regulate torque and speed, respectively.
Electrical: The position of the rotor magnet north pole relative
to the fixed a-phase coil is θm. From here forward, the power-
invariant form of Park’s transformation below is used.

Γ(θ) :=

√
2

3

[
cos θ cos(θ − 2π

3 ) cos(θ + 2π
3 )

− sin θ − sin(θ − 2π
3 ) − sin(θ + 2π

3 )

]
. (1)

In (1), θ is the electrical angle which can be expressed in
terms of the pole count, p, and mechanical angle, θm, such
that θ = pθm/2. Electrical and mechanical speeds are defined
as ω = dθ/dt and ωm = dθm/dt, respectively. Since the
transformation in (1) acts on the electrical angle, all dq-based
models hereafter are in the synchronous reference frame.

Three-phase stator currents, motion-induced back EMFs,
and drive terminal voltages are denoted as i = [ia, ib, ic]>,
E(θ) = [Ea(θ), Eb(θ), Ec(θ)]>, and v = [va, vb, vc]>, respec-
tively. Assume a symmetric structure with identical stator
coils with resistance R. Kirchhoff’s Law gives v = Rsi +
d(Ls(θ)i)/dt−E(θ) where Rs = I3R ∈ R3×3 and I3 is the 3×
3 identity matrix. Faraday’s Law gives E(θ) = −d(λsr(θ))/dt
where λsr(θ) = Nφ[cos θ, cos(θ − 2π/3), cos(θ + 2π/3)]> is
the rotor-to-stator flux linkage, N is the stator turn count, and
φ is the peak magnet flux. The stator inductance matrix is

Ls(θ) = LI3 −
Lm

2
(13 − I3)

+ Lθ

cos(2θ) 0 0
0 cos

(
2θ − 4π

3

)
0

0 0 cos
(
2θ − 2π

3

)
 (2)

+
Lmθ

2

 0 cos
(
2θ − 2π

3

)
cos
(
2θ − 4π

3

)
cos
(
2θ − 2π

3

)
0 cos (2θ)

cos
(
2θ − 4π

3

)
cos (2θ) 0

 ,
where 13 ∈ R3×3 is a matrix with each entry equal to 1, Lm is
the mutual inductance between any two stator coils, Lθ is the

rotor angle dependence magnitude among the self inductances,
and Lmθ captures mutual inductance position dependence. The
Lθ and Lmθ terms in (2) represent machine saliency.

Establish the following in the synchronous frame: vdq =
[vd, vq]> = Γ(θ)v, idq = [id, iq]> = Γ(θ)i, Edq =
[Ed, Eq]> = Γ(θ)E(θ), and λdq = [λd, λq]> = Γ(θ)λsr(θ).
Since i = Γ>(θ)idq, E(θ) = Γ>(θ)Edq, and Γ(θ)Γ>(θ) =
I2 ∈ R2×2, Kirchhoff’s Law becomes[

vd

vq

]
= Γ(θ)

[
RsΓ

>(θ)idq

+
d

dt
(Ls(θ)Γ

>(θ)idq) + Γ>(θ)Edq

]
,

=

[
Rid + Ld

did
dt − ωLqiq

Riq + Lq
diq
dt + ωLdid + Eq

]
, (3)

where the second expression follows after well-known manip-
ulations [9]. Above, Eq = ωλ where λ =

√
3/2Nφ is the

magnet flux linking the stator in the dq frame. Also,

Ld =
Lm

2
+ L+

Lθ + Lmθ

2
,

Lq =
Lm

2
+ L− Lθ + Lmθ

2
.

(4)

Control: A typical field-oriented speed controller is shown
in Fig. 1 where all control signals are in the synchronous
frame. Since Eq is linearly proportional to angular velocity,
speed control is achieved by manipulation of q axis signals.
A mechanical speed command, ω?m, is translated to the cor-
responding back EMF voltage command E?q = (pλ/2)ωm.
The EMF voltage error, ev, is processed by a proportional-
integral (PI) controller with proportional and integral gains
kp,v and ki,v, respectively. This outer speed controller yields
the current command i?q which is proportional to torque. For
the sake of generality, assume i?d is an arbitrary unspecified
signal1. Current errors, denoted as [ed, eq]>, are processed
by inner PI controllers with proportional and integral gains
[kp,d, kp,q]> and [ki,d, ki,q]>, respectively, and whose control

1i?d is typically fixed at zero except in cases where flux-weakening is used.
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effort is [ud, uq]>. After feedforward signals are added to the
control effort, the inner torque controller yields the switch-
cycle-averaged drive terminal voltages [vd, vq]> which are in
turn processed by a pulse width modulator. Averaging over one
switch cycle and projecting all variables to the synchronous
frame, we obtain the model in Figure 1(b).
Mechanics: The motor, shaft, gear, and wheel system have
a combined angular inertia J , and the shaft experiences
electrical and mechanical torques τe and τm, respectively.
Angular kinetic friction at the rotor shaft is denoted as βr and
frictional torque is βrωm. Terrain-to-wheel mechanical torque
is transferred to the motor shaft across a gear with machine-
side to drivetrain-side ratio γ:1.

The overall vehicle, payload, and passengers have total mass
m. A wheel with radius r rolls on terrain with grade θg.
This yields a tangential force on the wheel edge given by
Fg(θg) = mg sin θg where g denotes gravitational accelera-
tion. We model rolling friction on the tires as the summation
of speed-dependent and speed-independent forces given by
Ff(θg) := mgf0 cos θg and vmα(θg), respectively, where f0

and fv are frictional coefficients, vm is the vehicle veloc-
ity, and α(θg) := mgfv cos θg resembles a grade-dependent
damping. Assuming system rigidity, the vehicle translational
velocity, mechanical angular velocity, and electrical angular
velocity are related by

vm = ωm
r

γ
= ω

2r

pγ
. (5)

Ignoring wind, the drag is

Fd(vm) =
1

2
ρCdAfv

2
m, (6)

where ρ is the density of air, Cd is the drag coefficient, Af is
the frontal area. These modeling constructs are in [18].

Rotational dynamics abide by

J
dωm

dt
= τe − βrωm − τgb, (7)

where τm = βrωm+τgb is the total mechanical torque and τgb

denotes the torque on the motor-side of the gearbox. Assuming
an ideal gearbox and lossless energy transfer between angular
and translational domains, the force delivered by the drivetrain,
denoted as Ft, to the wheel edge is τgbγ/r. This gives the
following translational dynamics

m
dvm

dt
= Ft − vmαt(θg)− Fg(θg)− Ff(θg)− Fd(vm). (8)

III. MODELING SUBSYSTEMS AS CIRCUITS

Before we obtain a unified circuit equivalent, we first
uncover circuit representations for the stator, drive controls,
and mechanical systems. Subsequently, conservation of energy
is used to weave all subsystems into a single circuit.

A. Stator Dynamics as a Circuit

Here, we seek a streamlined circuit representation of the
electrical machine dynamics in (3). Add and subtract ωLdid

R Lq

LdR

vq

vd

iq

id

+

+

Eq

Ed

ωLd 

+

+

+

+

vg,d

vg,q

Fig. 2: Equivalent circuit of the machine stator dynamics where a gyrator
captures cross-coupling between axes and EMFs are coupled with motion.

from the first row of (3) to obtain[
vd

vq

]
=

[
Rid + Ld

did
dt − ωLdiq + ω(Ld − Lq)iq

Riq + Lq
diq
dt + ωLdid + ωλ

]
,

=

[
Rid + Ld

did
dt − ωLdiq + Ed

Riq + Lq
diq
dt + ωLdid + Eq

]
, (9)

where Ed := ω(Ld − Lq)iq. The results of the d-axis ma-
nipulations in (9), and depicted in Fig. 1(b), are particularly
appealing since, i) the net power absorbed by the d and q axis
cross-coupling terms is zero (i.e., (−ωLdiq)id +(ωLdid)iq =
0), and ii) the power absorbed into the back EMF, namely
Edid, is converted into mechanical torque. Observation (i) can
be captured as a lossless two-port circuit element where the
effective resistance of each input port is ωLd. This is known
as the gyration effect [19] and is represented by the ideal
gyrator in Fig. 2 which transfers energy between axes. We
close by noting that observation (ii) allows us to express the
electrically-induced mechanical power as

Eqiq + Edid = λ
p

2
ωm︸ ︷︷ ︸
Eq

iq +
p

2
ωm(Ld − Lq)iq︸ ︷︷ ︸

Ed

id

= τqωm + τdωm,

= τeωm,

(10)

where τe = τq + τd, and

τq = iq

(
λ
p

2

)
, τd = id

(p
2

(Ld − Lq)iq

)
. (11)

B. Controllers as Circuits

Torque Control: Referring to (11), we first note that torques
are regulated via currents since they are proportional. Figure 1
reveals that the dq current compensators have current differ-
ences at their inputs and voltage signals on their output sides.
This indicates an impedance-like behavior where we denote
the d and q compensator transfer functions as the impedances
zc,d(s) := kp,d + ki,d/s and zc,q(s) := kp,q + ki,q/s,
respectively. Uncovering Kirchhoff’s relations in Fig. 1(b),
the controller can be redrawn equivalently as in Figure 3.
Evidently, the reference signals act as current sources, propor-
tional and integral gains are identical to equivalent resistances
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and inverse capacitances, the compensator itself is a series-
connected RC circuit, and feedforward takes the form of a
measurement-dependent voltage source.
Speed Control: Since Eq = λωmp/2, speed regulation is
tantamount to back EMF voltage regulation. Hereafter, we
consider speed dynamics in terms of a back EMF voltage to
emphasize the circuit nature of the model. Having said that,
identical results could be obtained from mechanical relations
directly. Given that the speed controller in Fig. 1 converts
voltage differences into a current command, the compensator
mimics an admittance given by z−1

c,v(s) := kp,v + ki,v/s. As
shown in Fig. 3, the parameters kp,v and ki,v are mapped to
a conductance and inverse inductance, respectively, where the
EMF error is placed across a parallel RL branch and the speed
command is a voltage source. Evidently, the speed and torque
control loops exhibit dual structures as highlighted in [3], [4].

C. Vehicle Mechanics as a Circuit

The crux of the mechanical-to-circuit equivalent lies in
drawing parallels between a system’s equations of motion and
electrical laws, while also defining appropriate force (voltage)
and flow (current) variables. Multiple analogies are possible,
the choice of which results in either transformers or gyrators
linking physical domains [16]. Here, we select torque and
force as current-like quantities, angular speed and velocity as
proxies for voltage, and the moment of inertia and mass as
capacitances. Since (torque× speed) and (force×velocity) are
equal to power, this ties our model to energy.

Compare the Newtonian equations in (7)–(8) and a capacitor
state equation of the form C̃dṽ/dt = ĩc. Hence, (7) and
(8) can each be depicted as a circuit where the moment
of inertia, J , and mass, m, become equivalent capacitances.
Furthermore, the right-hand-sides of (7)–(8) mirror Kirch-
hoff’s Current Law. It follows that the rotational shaft friction
βr maps to a conductance across the equivalent capacitance
J and the translational damping αt(θg) acts as a parallel-
connected conductance across equivalent capacitance m. In
(7), the drive torque, τe, is represented as a current injected
into capacitance J . Forces associated with gravity and speed-
independent friction, Fg(θg) and Ff(θg), respectively, in (8)

+

J

τe

ωm
−1

γ: 1 1 : r +

m
vm

−1αt 
βr

τm

Fd(vm)

Ff(θg)

(θg)

Ft

rotational mechanics

Fg(θg)

translational mechanics

τgb

Fig. 4: The mechanical system of an electric vehicle represented as an
equivalent circuit.

act as current sinks and the drag force, Fd(vm), becomes a
nonlinear state-dependent current. To link the rotational and
translational domains into a single circuit, we note that lossless
power transfer across the gearbox and wheel structure give

ωmτgb = Ftvm. (12)

Rigidity between rotational and mechanical domains and en-
ergy conservation in (12) map to equivalent transformer action.
The observations above collectively give Figure 4.

IV. UNIFIED MULTIPHYSICS MODEL

Our main result of a unified circuit model will now be
obtained by application of energy conservation and Kirch-
hoff’s Laws. Once the unified model is in hand, we then show
that closed-loop dynamics with control are straightforwardly
obtained from well-known circuit analysis methods.

A. Energy as a Fundamental Link

We now focus on energy transfer across subsystems. First,
note that the consistency of Kirchhoff’s relations in the torque
control loops allow us to merge the control and stator sub-
systems in Figs. 3 and 2, respectively, without any additional
steps (see [3]). Shifting focus to the electrical-mechanical link,
it is necessary to lay some groundwork.

Power absorbed by Ed and Eq is converted into electrically-
induced mechanical power as described in (10). Further anal-
ysis reveals the following electrical-mechanical relations:

Eq =
(
λ
p

2

)
ωm, iq =

(
λ
p

2

)−1

τq (13)

Ed =
p

2
(Ld − Lq)iqωm, id =

(p
2

(Ld − Lq)iq

)−1

τd (14)

Inspection of (13) and (14) show that torque contributions map
to currents on their respective axes and back EMF voltages
depends on mechanical speed. Most importantly, we observe
that λp/2 and (p/2)(Ld − Lq)iq act like ideal transformer
turns ratios. This insight allows us to merge the stator and
mechanical circuits in Figs. 2 and 4 together via a pair of
ideal transformers. Ultimately, we obtain the unified circuit
with control, electrical, and mechanical domains in Figure 5.

B. Linking Controls and Circuit Analysis

Next, we evaluate the closed-loop behavior of the torque and
speed control loops in Fig. 5 via circuit analysis . Our aim is to
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Fig. 5: A unified equivalent circuit model for a drive system with controls.

show that classical results, which are typically derived through
the lens of control theory, can be reproduced with greater ease
via circuit tricks. First, consider the current controller RC
circuit equivalents, zc,d(s) and zc,q(s), which regulate torque.
Denote the impedance of the stator d and q axis branches as
zs,d(s) := sLd + R and zs,q(s) := sLq + R, respectively.
Assuming ideal feedforward, disturbances introduced by the
gyrator cross-coupling and back EMFs are fully rejected. This
follows after evaluating Kirchhoff’s Voltage Law around the d
and q axis circuits and disturbance voltage cancellation. The
current divider equation directly gives us

iq(s) =
zc,q(s)

zs,q(s) + zc,q(s)
i?q(s) (15)

=
Ti,q(s)

1 + Ti,q(s)
i?q(s) (16)

id(s) =
zc,d(s)

zs,d(s) + zc,d(s)
i?d(s) (17)

=
Ti,d(s)

1 + Ti,d(s)
i?d(s). (18)

The well-known relations in (16) and (18), which are known
as a complementary sensitivity function in the controls lit-
erature, follow after defining the loop gains as Ti,q(s) :=
zc,q(s)/zs,q(s) and Ti,d(s) := zc,d(s)/zs,d(s) and some al-
gebraic manipulations. This establishes a link between funda-
mental relations in the controls and circuits domains.

Next, the mechanical system impedance projected across the
electromechanical transformer equivalent towards the stator is

zm(s) :=

(
β−1

net(θg)

∥∥∥∥ 1

sJnet

)(
λp

2

)2

, (19)

where Jnet := J +m(r/γ)2 mimics a net capacitance and

βnet(θg) := βr +

(
αt(θg) +

dFd(vm)

dvm

∣∣∣∣
vm=Vm

)(γ
r

)2

(20)

is the net mechanical conductance of the linearized system
at grade θg and quiescent velocity Vm. Hence, zm(s) is the
impedance of the linearized mechanical system observed from
the stator perspective. The speed control circuit carries current
i?q as given by

i?q(s) =
E?q (s)− Eq(s)

zc,v(s)
(21)

where we recall zc,v(s) := k−1
p,v‖sk−1

i,v captures the impedance
of the RL equivalent speed compensator. The voltage drop
across zm(s) equals the back EMF such that

Eq(s) = iq(s)zm(s), (22)

=
zc,q(s)

zs,q(s) + zc,q(s)
i?q(s)zm(s), (23)

=
zc,q(s)

zs,q(s) + zc,q(s)

E?q (s)− Eq(s)

zc,v(s)
zm(s). (24)

where the second line utilizes (15) and the final expression
results after substituting (21) for i?q(s). Solving for Eq(s) gives
the closed-loop relation

Eq(s) =
zc,q(s)zm(s)

(zs,q(s) + zc,q(s))zc,v(s) + zc,q(s)zm(s)
E?q (s) (25)

=
Tv(s)

1 + Tv(s)
E?q (s) (26)

where the loop gain, Tv(s) := zc,q(s)zm(s)/((zs,q(s) +
zc,q(s))zc,v(s)), in (26) is a ratio of impedances. Note that
the closed-loop relation in (25) resembles a voltage divider
expression and was derived entirely through basic circuit
manipulations. The result in (25) may be expressed in terms
of mechanical speeds (i.e., ωm and ω?m) by simply multiplying
both sides by 2/(λp).

V. SIMULATION RESULTS

Here, we carry out a side-by-side comparison of, i) a
conventional switch-level simulation that mirrors the structure
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Fig. 6: (Top) Position versus grade data used in time-domain simulations.
(Middle) Closed-loop torque profile for both switched and averaged equivalent
circuit simulations. (Bottom) Difference between conventional switched and
circuit-based simulations.

Fig. 7: (Top) Velocity under a fixed speed reference shown for the con-
ventional switched and equivalent circuit simulations. (Bottom) Velocity
difference between the two simulations.

Table I: Simulation Parameters for Case Studies.

v?m=40.25km/hr Ld= 24.3µH Lq= 26.3µH

R=5mΩ λ = 33mV s/rad p = 20

βr = 80× 10−3 Nm s
rad J = 103.5kg m2 m = 1000kg

γ = 10 r = 320mm Af = 2.20m2

Cd = 280× 10−3 fv = 16× 10−3s/m f0 = 16× 10−3

kp,d = kp,q = 3.14Ω ki,d = 15.3× 10−3 1
F ρ = 1.23kg/m3

ki,q = 16.5× 10−3 1
F kp,v = 59.9× 103Ω−1 ki,v = 46.2H−1

in Fig. 1(a), and ii) an equivalent circuit simulation assembled
purely with basic circuit components along the lines of Fig. 5.
Both simulations were carried out in PLECS software. The
conventional simulation utilizes a standard control system
block diagram, a synchronous machine block, and specialized
blocks that capture mechanical behavior. In contrast, the equiv-
alent circuit is assembled exclusively with RLC elements,
transformers, a gyrator, as well as current and voltage sources.
These two models are in Figure 8. We note that the gyrator and
state-dependent transformer blocks in Fig. 8(b) have a mask
and the internal structure contains coupled voltage and current
sources. In both simulations, we modeled an EV with the
parameters in Table I. The EV utilized a speed controller and
was subjected to a terrain whose grade varied with position.
Torque and speed waveforms for the conventional switch-
level simulations are compared in Figs. 6–7, respectively. As
illustrated, it is evident that the equivalent circuit captures all
dynamics of the conventional simulation with the exception of
ripple. It is also clear that the circuit representation elucidates
system operation and bypasses the use of specialized machine
and mechanical blocks which obscure low-level physics.

VI. CONCLUSIONS

In this paper, we established a multiphysics circuit equiv-
alent that captures electrical, control, and mechanical dy-
namics in a unified setting. Our formulation hinges on the
universality of energy across all known physics and careful
application of circuit laws. The resulting circuit model allows
for straightforward analysis of closed-loop dynamics using
circuit tricks that are second nature to electrical engineers. The
properties of the unified circuit equivalent not only give deeper
insight into system operation, but also streamline closed-loop
analysis. The utility of this model was demonstrated through
an electric vehicle simulation where end-to-end (i.e., control-
to-pavement) dynamics were captured in a circuit simulator.
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Fig. 8: The diagram in (a) shows a conventionally assembled switch-level PLECS simulation using machine and mechanics blocks which obscure internal
details. Our circuit equivalent model in (b) reveals the multiphysics operation in a lucid manner using standard circuit elements.
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