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Abstract�Photovoltaic (PV) inverters typically have a multi-
loop control architecture to facilitate extraction of maximum
possible dc-side power and its transfer to an ac-side grid
interconnection. In this paper, we integrate dc-side controls that
modulate the dc-link voltage for peak PV power harvest with
an ac-side dispatchable virtual oscillator controller (dVOC) that
synchronizes to the grid. In particular, maximum power point
tracking is realized via integral control which then generates a
dc-link voltage command. From there, dc-side voltage regulation
is achieved by modulating the power reference sent to the ac-side
dVOC. The dVOC yields an ac voltage command which is tracked
with nested voltage- and current-control loops in the synchronous
reference frame. Ac-side functions are topped off with an ac-
side current limiter to ensure proper operation during large grid
transients. We then analyze the eigenvalues of this interconnected
system and its participation factors to demonstrate timescale
separation of the various control loops. The proposed framework
is substantiated via simulations and experiments.

I. INTRODUCTION

Grid-forming (GFM) controllers have emerged as a popular
approach to realize future grids dominated by power electron-
ics [1]. This class of inverter controllers, which includes droop
methods [2], virtual synchronous machines [3], and virtual
oscillators [4], gives communication-free synchronization and
automatic power sharing in complex systems. In this context,
dispatchable virtual oscillator control (dVOC) has attracted
recent interest due to its time-domain implementation, high-
bandwidth performance, and its inclusion of setpoints to adjust
active and reactive power [5]�[7]. To facilitate integration of
grid-connected photovoltaics (PV), it is necessary to integrate
dc-side controls with the aforementioned GFM controllers. To
�ll this need, we propose a control structure that merges the
functionalities of dVOC and its fast inner control loops, which
collectively dictate ac-side dynamics, with dc-side control
loops that ensure maximum power point tracking (MPPT) and
dc-link voltage regulation (see Fig. 1). The remainder of this
paper is focused on describing the proposed control structure,
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Fig. 1: A PV-powered grid-forming dVOC inverter with inner loops, MPPT,
and dc voltage control.

assessment of its small-signal stability, and experimental val-
idation.

To date, GFM-controlled inverters have primarily been
studied from the vantage point of ac system stabilization
and synchronization. However, this emphasis overlooks dc-
side energy dynamics with resources such as PV, wind, and
batteries. Irrespective of what is connected on the dc-side, the
fundamental physical issue that underlies grid integration fea-
sibility is energy balance. Namely, dc- and and ac-side power
transfer must be closely matched such that any difference is
either stored or extracted from the dc-link. Hereafter, we focus
on systems that use PV generation. Delving into prior art,
a vast majority of efforts are focused on current-controlled
grid-following inverters. For instance, the works in [8]�[10]
propose techniques for energy balance, MPPT, and dc-link
regulation in grid-following PV systems under a variety of
conditions.

As for attempts to integrate GFM functions with dc-side
generation, [11] shows the use of inverters with virtual syn-
chronous machine matching controls for the realization of
microgrids with PV and storage. Similarly, the results in [12]
illustrate utilization of virtual-oscillator-controlled inverters
for PV-side MPPT and automatic storage control in islanded
systems. It should be noted that the work in [12] leverages
an early version of oscillator controls that lack setpoints, and,
hence, the performance was relatively sluggish. Furthermore,
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Fig. 2: Three-phase inverter system with details of the power-stage components as well as the various control loops and their interconnections.

stability was not demonstrated analytically, control design
was not rigorously established, and ac-side controls lacked
fast inner controls. To �ll these gaps, this paper utilizes the
latest dVOC incarnation which gives enhanced ac-side power
delivery control and higher power quality. Dc- and ac-side
controls are integrated such that a dc-link voltage regulator
modulates the dVOC power setpoint. In effect, this ensures
power balance is maintained. Simultaneously, an integral-
based MPPT controller generates the dc-link voltage command
and cascaded inner-outer control loops regulate ac waveforms
such that the dVOC reference is realized. The ac-side con-
trol loops are topped off with a current limiter to prevent
overcurrents during faults and voltage sags. Taken together,
this gives a comprehensive implementation which merges dc-
and ac-side objectives. Finally, we establish stability of the
interconnected system via small-signal eigenvalue analysis.
The small-signal model is also used to perform participation
factor analysis and show timescale separation of the various
control loops.

The rest of the paper is organized as follows: The overall
system and its various dynamical subsystems are established
in Section II. A nonlinear model of the system is given in
Section III along with its linearization and stability analysis.
Numerical simulations and experiments are provided in Sec-
tion IV. Finally, concluding statements are in Section V.

II. SYSTEM DESCRIPTION AND DYNAMICS

In this section, we �rst introduce notation and proceed
to outline the GFM PV system and its control structure. In

particular, we describe the dVOC, inner current and voltage
controls, MPPT, and dc voltage-control loops.

A. Notation

We focus on three-phase systems where voltages and
currents are represented as vectors of the form fabc =
[fa, fb, fc]>, where (·)> denotes the vector transpose. Clarke’s
and Park’s transformations [13] are given by

�̃ =
2
3

[
1 − 1

2 − 1
2

0
p

3
2 −

p
3

2

]
,

and

�(θ) =
2
3

[
cos θ cos (θ − 2�

3 ) cos (θ + 2�
3 )

− sin θ − sin (θ − 2�
3 ) − sin (θ + 2�

3 )

]
,

respectively, which can be applied to give the αβ and dq
signal, denoted by f�� = [f� , f� ]> and fdq = [fd, fq]>,
respectively. The Euclidean norm of vectors in the stationary
and synchronous reference frames are denoted by ‖f�� ‖ =√
f2

� + f2
� and ‖fdq‖ =

√
f2

d + f2
q .

B. System Architecture

Figures 1 and 2 illustrate a high-level snapshot and detailed
view of the inverter system under investigation, respectively.
The three-phase inverter has PV panels at its input, the voltage
and current inputs are denoted by vpv and ipv, respectively. PV
current is injected into dc capacitor Cdc and dc-side dynamics
are regulated with an integral-based MPPT and dc-link voltage
regulator. Dc power is processed through a dc-ac power stage
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TABLE I
RELEVANT DYNAMIC AND ALGEBRAIC SYSTEM EQUATIONS.

dVOC LCL �lter

_V =
�

�2
v

V
�
2V 2

nom � 2V 2�� �v�i

3CV
(Q�Q?);

_� = ! = !nom � �v�i

3CV 2
(P � P ?);

�
_id
_iq

�
=

"
�Rf
Lf

!

�! �Rf
Lf

#�
id
iq

�
+

1

Lf

�
vd � vo;d
vq � vo;q

�
;

�
_io;d
_io;q

�
=

"
�Rg

Lg
!

�! �Rg

Lg

#�
io;d
io;q

�
+

1

Lg

�
vo;d � ed
vo;q � eq

�
;�

_vo;d
_vo;q

�
=

�
0 !

�! 0

��
vo;d
vo;q

�
+

1

Cf

�
id � io;d
iq � io;q

�
;

Current controller, (kp;i +
ki;i

s ) Voltage controller, (kp;v +
ki;v

s )

vd = kp;i _
d + ki;i
d + vo;d � !Lf iq;

vq = kp;i _
q + ki;i
q + vo;q + !Lf id:

i?d = kp;v _�d + ki;v�d + io;d � !Cfvo;q;

i?q = kp;v _�q + ki;v�q + io;q + !Cfvo;d:

Dc-link dynamics Dc-link controller, (kp;pv +
ki;pv

s )

Cdc _vpv = ipv(vpv) � P

vpv
; _xI;pv = vpv � v?pv: P ? = kp;pv(vpv � v?pv) + ki;pvxI;pv:

PV characteristic equation MPPT controller

ipv(vpv) = Isc � Isat
�

exp
vpv
nVT

� 1
�
: _v?pv = 


@(vpvipv)

@vpv

whose ac side contains an LCL �lter with inverter- and grid-
side inductances Lf and Lg, respectively, and �lter capacitance
Cf . Note that Rf and Rg are corresponding series resistances
within the inductive branches. The currents iabc and io;abc �ow
through the inductances Lf and Lg, respectively, while vo;abc
and vabc are capacitor and averaged switch-terminal voltages,
respectively. Finally, eabc denotes voltages across the ac grid.

The relevant transformed variables are

[id, iq]> = �(θ)iabc, [vo;d, vo;q]> = �(θ)vo;abc,

[io;d, io;q]> = �(θ)io;abc, [io;� , io;� ]> = �̃io;abc,

where θ is calculated from the dVOC states as θ =
tan�1(v?

� /v
?
� ). The ac-side capacitor voltages vo;dq are regu-

lated to track the dVOC voltage in the synchronously rotating
reference frame

[v?
o;d, v

?
o;q]> = �(θ)[v?

� , v
?
� ]>.

The grid-side current and control effort signal emanating from
dc-side controls act as inputs to the dVOC. Ac-side �lter
capacitor voltage control is achieved with the use of two
cascaded inner loops that not only gives enhanced reference
tracking and disturbance rejection, but also open the door
for protective ac current-limiting. This cascaded structure
is commonplace in grid-connected inverter systems. In the
subsections below, we will delineate each of the aforemen-
tioned subsystems which are collectively described by the state
equations in Table I.

The timescales that each control loop is intended to func-
tion at are given in Fig. 3. All control loops are organized
according to the underlying time constants. In particular, a
faster controller receives an input signal (or command) from
an upstream slower controller. This ensures that the faster loop

reaches its steady state more rapidly than the control actions
of the slower subsystems. This in turn facilitates reference
tracking among the slower controllers and avoids con�icting
control actions between the various loops. In sum, such an
approach facilitates overall system stability. Our strategy is
to separate the bandwidth of each loop by approximately an
order of magnitude.

C. Dispatachable Virtual Oscillator Controller

The dVOC controller (see the yellow box in Fig. 2) under-
lines the core GFM functionality which can be used to regulate
the �lter capacitor voltage and frequency. The controller
features active- and reactive-power commands, P ? and Q?,
respectively, as inputs along with the grid-side current in the
stationary reference frame. In this paper, the Andronov-Hopf
dynamics are applied as the core virtual oscillator controller.
Note that this structure mirrors what is in [6]. The dVOC
subsystem is second-order where vC and iL are the states of
virtual circuit as depicted in Fig. 2. The state equations for vC
and iL are

C _vC = −iL + im − u1, L_iL = vC + vm − εu2, (1)

where L and C are virtual circuit components. The dVOC
input signals,

[u1, u2]>=κiR(ϕ)(io;�� − i?o;�� ),

are derived from the difference between measured grid-side
currents [io;� , io;� ]> and current setpoints:

[
i?o;�
i?o;�

]
=

2
3‖v?

�� ‖2

[
v?

� v?
�

v?
� −v?

�

] [
P ?

Q?

]
.
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In the synthesis of the input signals, κi is a current scaling
factor; its value will be discussed shortly. Furthermore, R(ϕ)
denotes the rotation matrix as drawn in Fig. 2. From here
forward, we �x the rotation angle at ϕ = π/2. Moreover, the
state-dependent voltage and current sources are de�ned as

vm =
ξ

ωnom

(
2X2

nom − ‖x‖2) (εiL),

im =
ξ

εωnom

(
2X2

nom − ‖x‖2) vC,

where ξ is a positive scalar, x = [vC, εiL] and Xnom is the
nominal oscillation RMS amplitude. Note that vm and im
collectively absorb energy from or provide energy to the LC
circuit such that ‖x‖ approaches

√
2Xnom asymptotically. The

circuit resonant frequency ωnom = 1/
√
LC coincides with

nominal grid frequency, and, the characteristic impedance,
ε =

√
L/C.

We scale the states x by a positive scalar κv and have v?
� =

κvvC and v?
� = κv(εiL) which are the voltages we intend to

appear across the ac �lter capacitance and will be regulated
by downstream inner-loop controls. Voltage and current signal
scalings that reside at the boundaries of the dVOC subsystem
are denoted as κv and κi, respectively, whose values are as
follows

κv = Vnom, κi = 3
Vnom

Srated
,

where Vnom is the nominal voltage magnitude and Srated is
inverter rated power. With this selection, we get an oscillator
model with both input and output unity RMS amplitude at
rated power condition. Transforming the dynamics (1), we
obtain the voltages v?

� and v?
� dynamics as follows

_v?
� =

ξ

κ2
v

(2V 2
nom − 2V 2)v� − ωnomv

?
� −

κv

C
u1,

_v?
� =

ξ

κ2
v

(2V 2
nom − 2V 2)v� + ωnomv

?
� −

κv

C
u2,

(2)

where V is the RMS amplitude of dVOC voltage V =
‖v?

�� ‖/
√

2. To streamline analysis, we focus on the polar
model with the dynamics of two variables, V and θ, derived
from (2). The voltage-amplitude and angular dynamics are
given by

_V =
ξ

κ2
v
V
(
2V 2

nom − 2V 2)− κvκi

3CV
(Q−Q?),

_θ = ω = ωnom −
κvκi

3CV 2 (P − P ?),
(3)

where the active and reactive power physically delivered out

of the inverter ac capacitive branch are

P =
3
2

(vo;dio;d + vo;qio;q),

Q =
3
2

(vo;qio;d − vo;dio;q),

respectively. In addition, the steady-state voltage and fre-
quency regulation can be found in [6].

D. The LCL Filter

In the synchronous reference frame, the �lter dynamics are
given by

[_id
_iq

]
=

[
−R f

L f
ω

−ω −R f

L f

][
id
iq

]
+

1
Lf

[
vd − vo;d
vq − vo;q

]
, (4a)

[_io;d
_io;q

]
=

[
−R g

L g
ω

−ω −R g

L g

][
io;d
io;q

]
+

1
Lg

[
vo;d − ed
vo;q − eq

]
, (4b)

[
_vo;d
_vo;q

]
=
[

0 ω
−ω 0

][
vo;d
vo;q

]
+

1
Cf

[
id − io;d
iq − io;q

]
. (4c)

One common approach for selecting LCL �lter parameters
involves picking a resonant frequency value that is between
ten times the value of grid frequency and half the value of
switching frequency [14]. For a given resonant frequency,
picking the inverter-side inductance to be equal to the grid-side
inductance ensures the smallest capacitive reactive power [15].
These design considerations yield the values for Lf , Lg, and
Cf in the validation studies in the latter half of the paper.

E. Current and Voltage Controller

Two proportional-integral (PI) controllers with proportional
and integral gains kp;i, ki;i, respectively, and kp;v, ki;v,
respectively, are correspondingly used to regulate idq and
vo;dq, respectively (see the blue box in Fig. 2). Feedforward
and decoupling controls are included in the control structure.
In order to prevent overcurrents, current-controller commands
are limited by a saturation block and a companion anti-windup
function. The integral states are _γdq := [ _γd, _γq]> = [i?dq− idq]
and _φdq := [ _φd, _φq]> = [v?

o;dq − vo;dq]. The equations which
dictate the averaged switch terminal voltages and inverter-side
currents are

vd = kp;i _γd + ki;iγd + vo;d − ωLf iq,

vq = kp;i _γq + ki;iγq + vo;q + ωLf id,
(5)

and
i?d = kp;v _φd + ki;vφd + io;d − ωCfvo;q,

i?q = kp;v _φq + ki;vφq + io;q + ωCfvo;d,
(6)

time
pv
?vpvv I,pvxµV

0.1 ms 1 ms 10 ms 0.1 s 1 s 10 s

MPPTdVOC

di qi q;ovd;ov

Capacitor
voltage control

Inverter
current control

DC
voltage controlDescription

States

Fast

Slow

Fig. 3: Time-scale separation of multiple controllers in the dVOC GFM inverter model.
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respectively. For the sake of clarity, we emphasize that aver-
aged three-phase switch terminal voltages can be expressed as
vabc = �>(θ)vdq.

F. MPPT and Dc Voltage Control

The voltage across Cdc is regulated by another PI con-
troller with proportional and integral gains kp;pv and ki;pv,
respectively, and the integral state is denoted as xI;pv. This
controller acts on the error signal vpv − v?

pv where v?
pv is

the dc-link voltage reference produced by the upstream MPPT
controller. As shown in Fig. 2, the PI control effort signal is
P ? which is then fed into the dVOC subsystem. In the end,
this PI controller ensures energy balance on both ends of the
dc link capacitance. Assuming a lossless dc-ac power stage,
the dynamics of the dc-link voltage and its controller are

Cdc _vpv = ipv −
P

vpv
, _xI;pv = vpv − v?

pv, (7)

where the output of the controller is

P ? = kp;pv(vpv − v?
pv) + ki;pvxI;pv. (8)

The MPPT controller is designed to extract maximum power
from the PV input and is formulated as the following integral
controller:

v?
pv = γ

∫
∂(vpvipv)/∂vpv. (9)

The maximum power point (MPP) is characterized by a zero
value within the integrand. Assuming a smooth concave PV
voltage-current curve, this ensures that v?

pv converges to vmpp
which denotes the MPP voltage.

III. SMALL-SIGNAL MODEL AND STABILITY ANALYSIS

In this section, we establish the small-signal system model
and analyze stability of the interconnected system described
in the prior section.

A. Dynamics and Linearization

The dynamical equations in Section II are summarized in
Table I. These can be collectively expressed in the compact
form

_x = f(x, u), (10)

6000

3000

-3000

0

-6000
   0-1000-2000-3000-4000 g¸fRe

g¸f
Im

{34.37+190j

{34.37{190j

{32.38+1j

{4.86
{32.38{1j

33:133¡ 87:99¡ -0.4438

Fig. 4: Eigenvalues map of system under investigation.

TABLE II
SYSTEM PARAMETERS.

Symbol Description Value Units

In
ve

rt
er

Srated rated power 450 W
Vnom rated voltage 30 V
!nom rated frequency 2�60 rad/s
fsw switching frequency 20 kHz
Lf , Lg inductance 1:5 mH
Rf , Rg resistance 0:2 

Cf �lter capacitance 30 �F

dV
O

C
&

in
ne

r
lo

op
s

�v voltage scaling 30 V/V
�i current scaling 0:2 V/A
’ rotation angle �

2
rad

� constant 15 (Vs)� 2

C capacitance 0:2679 F
L inductance 26:268 �H
!p P control bandwidth 140 Hz
kp;v proportional gain 0:075 
� 1

ki;v integral gain 0:251 (
s)� 1

!i idq control bandwidth 1500 Hz
kp;i proportional gain 14:13 

ki;i integral gain 1884:9 
s� 1

!v vo;dq control bandwidth 400 Hz

M
PP

T
&

dc
dy

na
m

ic
s Voc open circuit voltage 120 V

Isc short circuit current 3:5 A
Vmpp MPP voltage 100 V
Impp MPP current 3:0 A
kp;pv proportional gain 0:29 A
ki;pv integral gain 8:9 As� 1


 MPPT gain 0:01 V/V
!pv vpv control bandwidth 24 Hz
!mppt MPPT control bandwidth 0:25 Hz

where the states are contained in x = [δ, V, i>dq,

i>o;dq, v
>
o;dq, φ

>
dq, γ

>
dq, vpv, xI;pv, v

?
pv]>, f(x, u) collects the

nonlinear dynamical equations, and u = [e>dq, Q
?]> contains

exogenous inputs. We assume Q? = 0.
We will evaluate system stability around the equilibrium

point where the converter will operate. To calculate the equi-
librium point, we set _x = 0 in (10) and solve for equilibrium
values numerically using Newton’s method [16]. The state
vector for which _x = 0 is denoted as xeq and the Jacobian
matrix is given by

A =




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂x15

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂x15

...
...

. . .
...

∂f15(x)
∂x1

∂f15(x)
∂x2

· · · ∂f15(x)
∂x15




∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x =x eq

(11)

where fk (x) and xk denote the kth element of f(x) and
x, respectively. Finally, the resulting small-signal model is
expressed as _̃x = Ax̃. To evaluate small-signal stability, we
characterize the eigenvalues, denoted as the complex vector λ,
of the Jacobian matrix A.

To quantify how much the kth state is associated with the
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TABLE III
LIST OF EIGENVALUES.

No. Eigenvalues Dominant states
Sl

ow

1 �0:4438 v?pv
2, 3 �3:34 � j0:009 �d; �q

4 �4:86 xI;pv
5, 6 �32:38 � j1:031 �; vpv; xI;pv
7, 8 �34:37 � j190:03 id; iq; io;d; io;q; 
d; 
q

9 �99:87 V
10 �133:33 id; iq; 
d; 
q
11 �133:33 id; iq; 
d; 
q

Fa
st 12, 13 �4647:6 � j4618:7 id; iq; io;d; io;q; vd; vq

14, 15 �4833:8 � j5182:9 id; iq; io;d; io;q; vd; vq

jth eigenvalue in λ, we de�ne the participation factor as

ρkj = ujk wkj , (12)

where ujk and wkj are the k-th elements of the left and right
eigenvectors, respectively, corresponding to the jth eigenvalue.

B. Selection of Control Gains

The control gains of each subsystem are chosen to ensure
that the inner loops are stable, robust, and suf�ciently faster
than subsequent outer loops. In particular, we start from the
fastest control loops and gradually work our way to the outer
slow loops. After the gains are selected, small-signal stability
of the overall system is veri�ed by ensuring that the real parts
of all eigenvalues of A are negative. Any numerical values
mentioned here are in relation to our particular setup with
parameters in Table II. Having said that, we aim to keep all
discussion below as general as possible.

1) Inner current and voltage controllers: The three phase
inverter we use in experiments is switched at a frequency of
20 kHz. To ensure the voltage control effort signals can be
realized at the switch terminals, the current control bandwidth,
ωi, is picked as being suf�ciently lower at 1.5 kHz [17]. For
both voltage and current controllers, it might be noted that
due to appropriate feedforward strategies, the plant for each
controller boils down to a �rst order pole. The controllers are
then tuned by the plant inversion method [18]. Along these
lines, the current controller gains, kp;i and ki;i, are selected as

kp;i = Lf ωi, ki;i = Rf ωi,

where the current loop bandwidth ωi is 2π 1500 rad/s. Simi-
larly, the control gains for the voltage controller are as follows

kp;v = Cf ωv, ki;v =
2 kp;v ω

2
v

ωi
,

where the voltage loop bandwidth ωv is 2π 400 rad/s.
2) dVOC oscillator: The dVOC receives the power refer-

ence, P ?, from the upstream dc-link controller and generates
the voltage references, v?

o;d and v?
o;q, which are then fed to

the downstream voltage controller. The main objective of this
oscillator thus becomes to set appropriate voltage references to

ensure correct power dispatch. To this end, use the following
power-tracking [6] dynamical guidelines:

P =
1

τp s+ 1
P ?, τp =

C X

κv κi
,

where τp denotes the �rst-order time constant of power P . We
know that transient performance of dVOC closely relate to the
values of virtual capacitance C, gains κv and κi, and X =
ωnomLg which represents the inductive reactance of inductor
Lg. As long as this time constant is greater than the time
constant of the voltage controller, then active power will be
tracked. This translates to the following relations

τp �
2π
ωv

, ωp = 2π/τp � ωv.

In our case, we choose the power-tracking bandwidth ωp as
2π 140 rad/s.

3) Dc-link voltage control: Now we focus on the dc-side
controller that ensured vpv tracks the MPPT-generated voltage
command v?

pv. Furthermore, recall that the dc-link controller
generates the power command, P ?, provided to the dVOC.
Hence, we make sure that the time constant of the dc-link
controller is greater than that of the dVOC. To facilitate
design, we assume the entire downstream three-phase inverter
system is in steady-state and abstracted away as the �ctitious
load resistance Rpv = v2

pv/P
?. To ensure stable operation,

the bandwidth of the dc-link controller is chosen such that
ωpv � ωp, where ωpv is the bandwidth of the dc-link voltage
controller. The resultant controller gains are then

kp;pv = ωpv Cdc, ki;pv =
ωpv

Rpv
,

where we obtain 2π 24 rad/s.
4) Integral-based MPPT: The MPPT integral control law

in (9) needs to be the slowest loop to ensure slow movement
along the MPPT curve and proper tracking of the MPP. The
main challenge in modeling the MPPT control law is from
the nonlinear voltage-current curve of the PV source and the
associated partial derivative in (9). Expanding this derivative
gives

_v?
pv = γ

(
ipv + vpv

∂ipv

∂vpv

)
,

where, the nonlinear voltage-dependent current is

ipv(vpv) = Isc − Isat

(
exp

vpv

nVT
− 1
)
. (13)

Above, n is the diode-ideality constant, VT is the equivalent
thermal voltage, Isc is the short-circuit current, and Isat is
the reverse saturation current. Rather than work with the full
nonlinear model in (13), we instead resort to the simpli�ed
model

ipv = Impp − β(vpv − Vmpp),

as shown in [19] where Vmpp and Impp are the voltage and
current at the MPP and β is approximated as

β =
∂ipv

∂vpv

∣∣∣∣
vpv=Vmpp

≈ Impp

Vmpp
.
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To facilitate small signal analysis, the MPPT control effort is
approximated as

_v?
pv = γ(Impp − β(vpv − Vmpp)− βvpv).

Under the assumption that the inner dc-link control loop works
as intended, we know vpv = v?

pv, and hence, the dynamics of
the MPPT control can be simpli�ed to a �rst order differential

_v?
pv = −2γβv?

pv + 2γImpp,

where, the second term is constant. To ensure stable operation,
we select γ such that

2γβ � ωpv.

In our system, this gives γ = 10 and the resulting bandwidth
of the MPPT control law, ωmppt, is 2π 0.5 rad/s.

C. Stability and Participation of States

The necessary and suf�cient condition for dynamic stability
of a �nite-dimensional nonlinear time-invariant system is that
its linearized counterpart should have all eigenvalues with
negative real parts. In other words, <(λ) < 0 where <(·)
returns the real part. As shown in Table III, all eigenvalues
have negative real parts, and, hence the nonlinear system given
by the dynamical equations of Table I is small-signal stable.
Furthermore, we verify the time-scale separation of the two
groups of state variables in this same analysis: slow quantities
correspond to the response of MPPT, ac voltage, and dVOC
control while fast variables correspond to the innermost current
loop and the voltage controller strapped around it.

Table III shows the different modes of the system and
the corresponding states which have the most contribution to
those modes as ascertained from the computed participation
factors. Note that since we did not strictly respect the factor-
of-10 separation guideline between bandwidths for the inner
and outer loops, the states appear merged together in groups
despite still obeying the trend in Fig. 3. The fast modes in
Fig. 4 belong to the ac-side LCL �lter states. Next in line
are the integrator states of the inner current and voltage loops
followed by the dVOC states. Finally, the slowest eigenvalues
link up with the dc-link and the MPPT state as the slowest of
all.

IV. EXPERIMENTAL SETUP AND VERIFICATION

Figure 5 shows the laboratory-scale experimental prototype.
The dc terminal of the three-phase inverter is connected to a
PV array simulator which faithfully mimics the parameters in
Table II. Dc-side sensing and inverter-side ac current sensing
are done via on-board sensors. To accommodate the remaining
control loops, we added additional sensor boards for grid-
side voltage and current sensing. The inverter output terminal
is connected to a resistive bank and an electronic grid such
that both islanded and grid-connected experiments can be
performed.

With the inverter energized only from PV at the open-
circuit point and disconnected from the grid simulator, the
line-line grid voltage is measured and used by the dVOC for

pre-synchronization. Once the capacitor and grid voltages are
locked, the inverter is connected to the grid via a manual
switch. Thereafter, dVOC transitions from synchronization-
mode to normal operation as in Fig. 2. Once normal operation
commences, the power reference begins at zero given the open-
circuit condition on the PV side. The dc-side voltage controller
and MPPT are also initialized to accommodate the open-circuit
startup con�guration. The integral-based MPPT then slowly
drives the voltage reference to approach the MPP voltage.
The inner controls ensure proper dispatch of the PV power to
maintain energy balance. Figure 6(a) clearly illustrates MPPT
operation whereas (b) shows stable operation at the zoomed-
in ac waveform level. During steady-state, the inverter draws
approximately 300 W from the PV panels while maintaining
an RMS line-neutral voltage near 30 V. Meanwhile the grid
simulator maintains a rigid RMS line-neutral voltage of 30 V
at 60 Hz.

V. CONCLUSIONS

In this paper, we presented a framework for modeling,
design, and analysis of PV-powered grid-forming inverter sys-
tems with dVOC and additional control systems for practical
operation. In particular, we consider an interconnected system
with MPPT, dc-side voltage regulation, fast inner-loop controls
for ac-side dynamics, as well as ac-side current limiting.
The main challenge was to harmonize the timescales across
which the various control loops functioned to avoid con�icting
actions and to ensure stability of the overall system. After
establishing the nonlinear model, we subsequently derived
its small-signal counterpart to assess stability and perform
participation factor analysis. Ultimately we showed that the
various control routines had suf�cient timescale separation and
were stable once interconnected. Finally we demonstrated the
proposed approach on a grid-connected PV-powered inverter
system.
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