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Abstract— In microgrids that are predominantly resistive,
real and reactive power can be controlled by implementation
of voltage and frequency droop laws respectively. However,
the variable frequency displayed by such a system complicates
analysis such that design approaches rely on approximations
and linearized models. In this work, we present a modified
form of droop control where only the voltage versus real power
relationship is upheld and the frequency is held constant. Since
the frequency is not explicitly controlled and the reactive power
is not measured, the controller can be simplified. In such a
setting, the only assumption we make is that all inverters have
access to a common time-reference. Because fixed frequency
operation is enforced by design, a variety of analytical tools
can be leveraged to formulate a comprehensive analytical
framework which facilitates a precise design methodology.
In particular, closed-form expressions on the output current
phase differences are obtained which yield practical selection
guidelines on the voltage-power droop gains such that reactive
flows between inverters are kept small. As a corollary, it is
demonstrated that there are no reactive power flows in the
presence of purely resistive loads. For the particular case
of a single inverter, an almost exact solution describing the
nonlinear dynamics of the inverter output voltage, current, and
power are derived. Accompanying simulation results validate
the analytical results and demonstrate the feasibility of the
proposed control approach.

I. INTRODUCTION

Microgrids are small-scale power systems which uti-
lize local power generation and are generally expected to
operate in both grid-connected and islanded modes such
that uninterruptible power is delivered to local loads [1],
[2], [3]. Because generation is placed in close proximity
to loads, a bottom-up approach to system design can be
emphasized. Of particular importance is the utilization of
modular renewable energy sources, such as wind and pho-
tovoltaics, and their accompanying power electronic inverter
interfaces. Droop control is a technique which has been
applied widely in inverter-based system such that system
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voltage and frequency stability is maintained while ensuring
synchronization [4].

In essence, droop control is a technique of controlling
inverters such that they approximate the dynamics of cou-
pled synchronous machines in power systems. However,
the variable frequency exhibited by droop controlled sys-
tems complicates analysis which often is overcome through
linearized models and assumptions on system impedances
[5], [6]. In [7], [8], power-flow based phenomenological
dynamic models that incorporate droop laws for frequency
synchronization and voltage control are analyzed. Suffi-
cient conditions for voltage stability in terms of inequality
constraints on various network parameters, the loads, and
generation set points are derived in [7]. A quadratic droop
law is introduced in [8] which enables analysis of the
equilibrium points under the corresponding model such that
closed-form load conditions for voltage stability are attained.
An improved droop law that achieves more accurate propor-
tional load sharing and is robust to component mismatches,
parameter drifts, and disturbances is proposed in [9].

In this work, we focus our investigation on inverter-
based microgrids with predominantly resistive networks
and propose a simplified droop controller which acts only
on the real power output of each inverter. By assuming
the existence of a common time-reference among inverters
(that is, isochronous operation), the system is designed to
operate at a single frequency despite system disturbances.
For networks with small X/R ratios, it is conventional to
modulate the inverter voltage and frequency inversely with
respect to the real and reactive power output, respectively
[10]. However, in contrast to established techniques, we
adopt a simplified and isochronous incarnation of droop
control where each voltage set-point is altered with respect
the real power output and the system frequency is fixed. In
such a setting, it is not necessary to measure and compute
the reactive power and isochronous operation is facilitated
by a common time reference between inverters. We also
supplement the controller with a virtual resistance such
that network inductances are subsumed. Since isochronous
operation is enforced by design, the development of a com-
prehensive analytical and design framework which describes
both steady-state and dynamic parameters is facilitated.

In our analysis, we focus on control architectures that
contain a slow droop-based outer loop which derives a
sinusoidal voltage reference and a fast inner loop which
consists of both a current and voltage controller. This is
in contrast to previous analytical efforts which exclude
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fast inner-loop controllers from analysis and are focused
exclusively on the slow droop dynamics. Furthermore, we
assume that the design of the inner controller is based on
the internal model principle such that the steady-state error
at the nominal frequency is zero. Under such conditions,
closed-form relationships of the output current phase differ-
ences are derived. Despite the fact that the inverter voltage
angles and reactive power are not explicitly controlled, we
show that the reactive power flows between inverters can
be kept small by proper selection of the droop gains and
we prove that reactive power flows are zero in the case
of a purely resistive load. Bounds on the system voltage
in terms of the active power commands and uncertainty
in loads are also obtained and the impact of the virtual
resistance on system performance is analyzed. Lastly, an
almost exact solution describing the nonlinear dynamics of
the output voltage, current, and power of a single inverter
is derived. Simulation results confirm the validity of the
analytical framework and demonstrate the feasibility of the
proposed control approach.

II. SYSTEM DESCRIPTION
Consider the network of N inverters connected in parallel

across a common load, as shown in Fig. 2 To facilitate analy-
sis, high-frequency switching dynamics are disregarded and
we model the averaged dynamics [11] of the kth inverter as
a controllable voltage source as shown in Fig. 1. By using
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Fig. 1. Average model of a single inverter instance k with an LC filter
and a linear load ZL(s). The parasitic resistance of the inductor windings
are encapsulated in Rk and the line resistance is denoted by rk .

Kirchoff’s laws for the circuit in Fig. 1, we obtain

v̂k =
v̂invk

LkCks2 +RkCks+ 1︸ ︷︷ ︸
Gvinv,k

− (Lks+Rk )̂ik
LkCks2 +RkCks+ 1︸ ︷︷ ︸

Gik

,

(1)
where x̂(s) represents the Laplace transform of x(t), vinvk is
the control signal of the kth inverter, and the output voltage
vk, inductor current iLk, and output inverter current ik are
measured signals. Therefore for the control law of the form
v̂invk = Krefkv̂refk−Kvkv̂+Kik îk, the closed-loop system
for the kth inverter is given by

v̂k = (1 +GinvkKvk)−1GinvkKrefkv̂refk +

(1 +GinvkKvk)−1(GinvkKik −Gik )̂ik, (2)

where vrefk is the sinusoidal reference voltage generated by
the droop controller (see Fig. 2). Therefore the dynamics

of N inverters are described by v̂ = T v̂ref + Qî, where
v̂ :=

[
v̂1 · · · v̂N

]T
, v̂ref :=

[
v̂ref1 · · · v̂refN

]T
,

î :=
[̂
i1 · · · îN

]
, T := diag(T1, . . . , TN ), Q :=

diag(Q1, . . . , QN ), Tk := (1 + GinvkKvk)−1GinvkKrefk,
and Qk := (1 + GinvkKvk)−1(GinvkKik − Gik). Further,
if we assume that the load is linear given by î = Y (s)v̂,
where Y (s) is the admittance matrix of the network (see
Fig. 2), then the closed-loop expressions for v̂ and î are

v̂ = (I −QY )−1T v̂ref , î = Y (I −QY )−1T v̂ref .

Also from the network in Fig. 2 with N branch resistances
rk for k = 1, . . . , N, the voltage across the load ZL is given
by

v̂L = h(s)

N∑
k=1

v̂k
rk
, (3)

where h(s)−1 := r−1
1 + · · ·+ r−1

N + Z−1
L and

îL =
v̂L

ZL(s)
=

h(s)

ZL(s)

N∑
m=1

v̂m
rm

= q(s)

N∑
m=1

v̂m
rm

, (4)

where q(s) := h(s)/ZL(s). The kth inverter current, ik, is
given by

î = (Λ− hλλT)v̂ = Y v̂ (5)

where Y := (Λ − hλλT), λ = [r−1
1 , . . . , r−1

N ]T, and Λ =
diag(r−1

1 , . . . , r−1
N ).

A. The droop model
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Fig. 2. A system of N parallel inverters that provide power to a load
with impedance ZL(s). The details of the outer-loop droop controllers and
network are shown.

The voltage–power droop law, which determines the
sinusoidal reference voltage for each inverter, is given by

vrefk(t) = [E∗ − nk(Pk − P ∗k )] sinωot, (6)

where ωo is the rated system frequency and nk is the kth

droop gain. Note that all inverters have access to a common
time-reference, t. Rewriting (6) in matrix form yields

vrefk(t) = [E∗1−N (P − P ∗)] sinωot,
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where N = diag(n1, . . . , nN ). The active power utilized
by each droop controller is derived from the instantaneous
power pk(t) := vk(t)ik(t) via a first order filter with time
constant τP . Thus,

P̂k =
1

τP s+ 1
p̂k. (7)

B. Inner-control-loop model

The inner control loop is composed of cascaded voltage
and current controllers. As shown in Fig. 3, the voltage
controller acts on the sinusoidal reference generated by the
outer droop controller. In turn, the voltage controller outputs
a sinusoidal current reference, iref , which is processed by
an innermost current controller. As outlined in [11], the
main advantage of this structure is increased robustness of
the inverter voltage to load variations. Note that the virtual
resistance, Rv , is incorporated by subtracting an iRv voltage
drop from the voltage reference.

+
+

− −
+

+ +
+

+
− kvolK kcurK

+
−

−
krv kinvv kLi kCi

ki

kv
krefi ksC

1

vR

kR+ksL
1

voltage control current control plant
krefv

Fig. 3. The inner-control loop for voltage regulation with a virtual
resistance. The transfer functions of the voltage and current compensators
are given by Kvol and Kcur, respectively.

Referring to Fig. 3, it follows that

v̂inv = Klverf v̂ref − K̃vv̂ +Kv î+KiL îL, (8)

where Klverf = KcurKvol, K̃v = KcurKvol − 1, K̃i =
Kcur −KcurKvolRv, KiL = −Kcur.

III. DYNAMICS OF A SINGLE INVERTER DRIVING A
LINEAR LOAD

In this section, an approximate solution with quantifiable
error bounds for an inverter driving a linear load is obtained.
Consider a single inverter driving an impedance load where
the measured power, P , is given by (7). For the remaining
analysis in this section, indices are dropped since we are
studying a single unit. We assume that the time constants of
the voltage and current dynamics in (8) are much faster than
the dynamics of the active power equation (7). Thus, with
respect to the voltage and the current dynamics, the power
P is approximated as being constant. In other words, both v
and i reach their steady-state values before any appreciable
change occurs in P.

For a given P , the product v(t)i(t) at steady-state
is given by 1

2
|(I − QY )−1T |2|Y (jωo)|E2(P ) cos(∠(Y (jωo))

− cos(2ωot + φi + φv), where E(P ) = [E∗ − n(P − P ∗)],
φv = ∠((I − QY )−1T |s=jωo), and φi = ∠(Y (I −
QY )−1T |s=jωo). Therefore from (7) we obtain

τP
dP

dt
+ P (t) = αE2(P )

(
1− cos(2ωot+ φi + φv)

cos(∠(Y (jωo))

)
(9)

where α = 1
2 |(I − QY )−1T |2|Y (jωo)| cos(∠(Y (jωo)).

Note that in the above time-varying nonlinear differential
equation, the time constant τp is designed to be large such

that the low-pass filter has a small bandwidth. As a result,
the filter rejects the sinusoidal term with frequency 2ωo

in (9). Therefore, by design, ε := 1/(ωoτp) � 1 and is
typically in the range of 10−3–10−4.

Theorem 1: There exist constants L > 0 and c > 0 such
that the solution P (t) to (9) with initial condition P (0)
satisfies

‖P (t)− P̄ (t)‖ ≤ cε for 0 ≤ t ≤ Lτp, (10)

where

P̄ (t) =
aβ−1(t)− b
β−1(t)− 1

, (11)

is the approximate solution of (9),
ε := 1/(ωoτp), (2αn2a, 2αn2b) =
2nα(E∗ + nP ∗) + 1±

√
4αn(E∗ + nP ∗) + 1, and

β(t) = (P (0)−a)
(P (0)−b) e

a−b
αn2τP

t
.

Proof: See Appendix

A. Simulation Results

In this section, the control implementation summarized
in Figs. 2– 3 is evaluated with a single inverter driving a
constant impedance load. The load is designed to consume
3 kW of real power at a power factor of 0.8. In addition,
n = 0.2 V/W, r = 0.1 Ω, P ∗ = 1.5 kW, E∗ = 120

√
2 V.

and τP = 0.1 s. The time-domain waveforms in Fig. 4(a)
compare the evolution of the approximate power response
in (11) and the numerical solution to (9). Along similar lines,
the approximate and numerically-simulated inverter voltages
using are compared in Fig. 4(b). The results confirm that the
approximate solution given in Theorem 1 provides a nearly
exact solution to active power and voltage signals.

IV. MULTI-INVERTER SYSTEM ANALYSIS

To begin, we assume that the branch resistance between
each inverter LC filter and the load is purely resistive. As
illustrated in Figs. 2– 3, the inner control loop has the
objective of tracking the sinusoidal voltage reference given
by vr,k(t) = Ek sinωot−Rvi.

Theorem 2: Consider the inner control loop shown in
Fig. 3. Suppose Kvolk has a factor 1

s2+ω2
o

and the closed-
loop system is stable. Also, suppose that vrefk(t) and ik(t)
are sinusoids with frequency ωo. It follows that in steady-
state

vk(t) = vr,k(t), (12)

where vr,k(t) is the voltage reference processed by the kth

inner-loop controller and vr,k(t) = vrefk(t)−Rvik(t). Thus,
if all external inputs to the system in Fig. 3 (that is vrefk and
i) are sinusoidal with frequency ωo, then the inverter voltage
follows the sinusoidal reference with zero steady-state error.
Furthermore T (jωo) = 1 and Q(jωo) = Rv.
Proof: The proof is omitted for space reasons.

The following theorem establishes that despite the ab-
sence of explicit control over reactive power, voltage phase
angle, and frequency, there will be no extraneous reactive
power flows if the load is purely resistive.
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Fig. 4. (a) Comparison of the approximated and numerically simulated power waveforms, P (t) and P̄ (t), respectively. (b) The approximated and
simulated inverter voltage waveform. (c) Phase differences in inverter currents for a system with two inverters. We consider the case where P ∗

2 = 3P ∗
1 ,

P ∗
1 + P ∗

2 = 6 kW, [L,R,C] = [600µH, 0 Ω, 100µF], rated load power is 6 kW, n1 = n2 = 0.05 V/W, and examine behavior over a range of load
power factors. The phase differences computed using (13) and (14) match results from the numerical simulations.

Theorem 3: Suppose the conditions of Theorem 2 hold
and the load is purely resistive such that ZL(s) = RL. In
steady-state, the voltage and current output of the kth inverter
is given by vk(t) = Vk sinωot and ik(t) = Ik sinωot for
Vk, Ik ∈ R+.
Proof: The proof is omitted for space reasons.

Next, we characterize the phase difference between in-
verter currents, ik and ij , in the general setting with complex
impedance loads.

Theorem 4: Let δk = (Ek−E∗)/E∗, δ = [δ1, . . . , δN ]T,
λv := [(r1 + Rv)−1, . . . , (rN + Rv)−1]T, ξ = λv

λv1
,

ν = (ZLλ
T
v 1)/(1 + ZLλ

T
v 1), and suppose the conditions

in Theorem 2 hold. Then tan(φk − φj), where φm denotes
the phase of im, is given by

Im(ν)
δk − δj
1 + ξTδ(

Re(ν)− 1 + δk
(1 + ξTδ)

)(
Re(ν)− 1 + δj

(1 + ξTδ)

)
+ Im(ν)2

.

(13)
Proof: See Appendix.

Remark 1: Note that if the load ZL is real, then the phase
differences between inverter currents are zero. This also
follows from Theorem 3.

The following corollary provides a more intuitive expres-
sion for the phase difference between currents which can
provide practical guidelines for design.

Corollary 1: Assume the notation and the assumptions of
Theorem 4. Suppose δk = O(ε) and |ZLλT1| � 1 then

tan(φk − φj) ≈
(∑

m

|ZL| sin θL
rm +Rv

)
(δk − δj). (14)

Remark 2: If Ek is close to E∗, which in turn yields
small δk := (Ek − E∗)/(E∗) =

∑
m 1/(rm + Rv), then

it is expected that δk − δj is small. Typically, the branch
resistance, rk, and virtual resistance, Rv, are both small,
when compared to |ZL|. Consequently, |ZLλT

v 1| � 1
should also hold. Thus, the assumptions in Corollary 1 are
not restrictive (see Fig. 4(c) for verification of analytical
expressions through simulations).

Remark 3: The relationship in (14) establishes that the
inverter current phase differences are small for those designs
that achieve values of Ek close to E∗. In particular, for the
current phase differences to be smaller than ε� 1, it follows
that |δk − δj | ≤ ε

∑
m

1
rm+Rv

|ZL| sin θL needs to be satisfied.

Remark 4: The amplitude of the voltage at the inverter
output, vk = Ek sinωot − Rvik, depends on the inverter
current ik where the nature of this dependence is not
straightforward. However, the expression in (14) depends
only on Ek since δk = (Ek − E∗)/E∗. Recalling Ek =
E∗ − nk(Pk − P ∗k ), it is evident that the deviation of Ek
from E∗ is dictated by the outer droop law. Thus, the
analysis above translates the concerns of limiting reactive
flows exclusively to the design of the outer droop law.

A. Bounds on voltage deviations

1) No branch resistance and no virtual resistance: In
geographically small networks, the interconnect resistances,
rk, are typically small. Theorem below summarizes the
results for case with zero branch and virtual resistances.

Theorem 5: Consider N inverters servicing a complex
load ZL (see Fig. 2). Assume there is no branch resistance,
no virtual impedance, and suppose the real power consumed
by the load is P ∗L = (E∗)2/(2RL) when vk = E∗ sinωot
for all k. We express the summation of commanded power
as

P ∗1 + P ∗2 + . . .+ P ∗N = (E∗)2/(2RL) + ∆, (15)

where ∆ represents the mismatch in actual and commanded
power delivery. Furthermore, assume all power generated is
consumed by the load. Under such conditions, the steady-
state voltage vk = v(t) for all k = 1, . . . , n is given by
Vg sinωo(t), where

Vg = E∗ − (E∗ +mRL)(1−
√

1 + 4δ), (16)

with δ = (2∆RL)/(E∗+mRL)2, m =
∑N
i=1

1
ni

. For small
δ we obtain Vg ≈ E∗ + 4∆

( E
∗

RL
+m)

.

Proof: See the Appendix.
Remark 5: Consider the case where all inverters have

the same droop coefficient (i.e. ni = n) and there are N
inverters such that m = N/n. In this circumstance,

Vg ≈ E∗ +
4n∆RL

nE∗ +NRL
. (17)

Thus, the deviation of Vg from E∗ becomes vanishingly
small as N increases. This implies that a system with more
inverters which delivers power to the same total power
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provides tighter voltage regulation in comparison to a system
with fewer inverters.
In the case where the total commanded power and actual
load power are matched (which implies ∆ = 0), we recover
Vg = E∗.

Corollary 2: Under the conditions in Theorem 5, if ni
and nj are chosen to satisfy niP

∗
i = njP

∗
j , then niPi =

njPj in steady state.
Proof: From the droop-laws we have Ei = E∗−ni(Pi−P ∗i )
and zero branch resistances implies Ei = Vg . It then follows
that ni(Pi − P ∗i ) = nj(Pj − P ∗j ). Thus niPi = njPj .

Remark 6: Note that Theorem 2 suggests a mechanism
for power sharing despite mismatched conditions, that is
even when

∑
i Pi 6=

∑
i P
∗
i .

B. Simulation results

The simulation parameters are R = 0 Ω, L = 600µH,
C = 100µF for inverter #1 and 1.2R, 1.2L, and 1.2C for
inverter #2. As before, the inner-loop voltage and current
compensator transfer functions, Kvol and Kcur, are both
assumed to contain poles at ±jωo where ωo = 2πf0 and
f0 = 60 Hz. The two inverters are connected in parallel
across a common load. The inner-loop controllers were
designed by following a loop-shaping procedure. The sen-
sitivity transfer functions corresponding to Kcur and Kvol,
as shown in Fig. 5(a), exhibit bandwidths of approximately
1 kHz and 600 Hz, respectively, and the same controller is
used for both inverters. The outer droop control is given
by Ek = E∗ − nk(Pk − P ∗k ), where E∗ = 120

√
2 V. The

value of nk dictates the deviation of Ek from E∗ which
in turn also influences reactive power flows according to
Corollary 1. Here two scenarios are studied.

1) Symmetric Outer Droop Laws: Figure 5(b) shows that
the difference in the inverter currents is negligibly small
when the outer-droop laws are the same for the two inverters
even when the load has non-unity power factor and the
power commanded does not match the active power rating of
the load. Since the droop laws are identical for this particular
case, both the inverter output voltages deviate by the same
amount and thus δ1 − δ2 = E1−E2

E∗ is small. This results
in small phase differences between inverter currents (see
Corollary 1). Thus, even under a mismatch between active
load power rating and total commanded power,

∑
P ∗k , the

phase difference between inverter currents is small. This
result also holds for complex loads.

2) Asymmetric Outer Droop Laws: If the load is purely
resistive, then the phase difference between inverter currents
is zero (see Theorem 3) regardless of mismatches between
rated active power of the loads and the total commanded
power or mismatched droop slopes among inverters. Simu-
lation results under mismatched droop slopes with a resistive
load are presented in Fig. 5(c).

Remark 7: An interesting observation supported both by
the analysis and simulations is that if the droop laws are
similar then the phase difference in the inverter currents
(and therefore the reactive flows) are small. This holds
even when the load is complex. In contrast, reactive flow

mitigation requires due care under mismatched droop slopes
for complex loads. One key insight obtained is that the phase
difference between currents can be controlled by ensuring
that deviation of all Ek from E∗ are similar. Under the
conditions of Theorem 5 and from Corollary 2, we can
conclude that Ei − E∗ = ni(P

∗
i − Pi) = nj(P

∗
j − Pj) =

Ej −E∗ = 0 if we impose niP ∗i = njP
∗
j on design of the

droop laws. Evidently in typical scenarios, the conditions of
the theorem are not met since branch and virtual impedances
are not zero. However branch resistances rk and virtual
resistance Rv assume small values and therefore a choice of
nk according to niP

∗
i = njP

∗
j can still prove an effective

design rule. Fig. 6(a) shows that the inverter current phase
differences are small when this guideline is used instead of
choosing identical droop coefficients. Also smaller values of∑
i niP

∗
i result in smaller phase differences. Higher virtual

resistances and branch resistances also result in lower phase
differences but at the expense of power sharing accuracy and
power loss (see Fig. 6 (b) and (c)). Thus the analysis and
simulations indicate the following measures to limit reactive
flows: i) choose nk according to niP

∗
i = njP

∗
j (e.g. the

reactive phase difference in inverter currents was reduced
from -40 deg to -13 deg for a power factor (lagging) of
0.5) ; ii) pick lower

∑
i niP

∗
i ; and iii) increase the values

of virtual resistance and or the branch resistance to further
limit reactive flows. With these design guidelines, reactive
power flows can be mitigated.

APPENDIX

Proof of Theorem 1: Note that (9) can be rewritten in terms
of slow time variable τ := ωot as dPs

dτ =

ε

(
−Ps + αE2

(
1− cos(2τ + φi + φv)

cos(∠(Y (jωo))

))
:= εg(Ps, τ),

where Ps(τ) = P (t). The corresponding averaged equation
is given by dP̄s

dτ = εḡ(P̄s), that is

dP̄s
dτ

= ε
(
−P̄s + α[E∗ − n(P̄s − P ∗)]2

)
,

which can be solved to obtain (11).
Let D = (P (0) − δ, b + δ) for some δ > 0. Since

εg(Ps, τ) is in C1, therefore for L in (0, P (0)+b+δ
2 supPs,τ ‖g(Ps,τ)‖ ),

the solution Ps(τ) ∈ D for 0 ≤ τ ≤ L/ε, and we obtain that
there exists c > 0 such that (using results from averaging
theory such as in [12]) ‖Ps(τ)− P̄s(τ)‖ < cε for 0 ≤ τ ≤
L
ε . The theorem statement results since P (t) = Ps(τ).
Proof of Theorem 4: We will assume steady state for
this proof. Now in the isochronous half-droop method
assuming that sinusoids with frequency ωo are tracked
perfectly we can assume that T (jωo) = 1 and Q(jωo) =
−Rv. Also, we assume that v̂ref = Eµ(s) where µ(s) =
ωo

s2+ω2
o

is the Laplace transform of a sinusoid with fre-
quency ωo. Thus it follows that v̂ = (I + Y Rv)−1Eµ(s),
î = Y v̂ = Y (I + Y Rv)−1Eµ(s), v̂L = h(s)λTv̂,
îL = v̂L

ZL
= q(s)λT(I + Y RV )−1Eµ(s). By using

Woodbury matrix inverse identity, we obtain Y −1 =
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Fig. 5. (a) Bode plots of the sensitivity transfer functions of the current controller and the voltage controller are shown. Both track 60 Hz sinusoids with
negligible error. (b) Difference in inverter currents is negligibly small when the droop law for both inverters is identical even when the total active power
commanded is twice the total rated active power of a complex load (load is rated at 3 kW with a power factor of 0.75 and P ∗

1 + P ∗
2 = 6 kW). (c) Two

Inverter currents are in phase when the load is purely resistive (rated at 3 kW). The commanded active power
∑
P ∗
k is 4.5 kW with P ∗

1 = 3.365 kW
and P ∗

2 = 1.125 kW. The droop coefficients are n1 = n2 = n = 0.02 V/W.
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Fig. 6. (a) Comparison of droop-law designs with different values of

∑2
i=1 niP

∗
i . Phase differences between inverter currents decrease as the virtual

resistances and branch resistances are increased as shown in (b) and (c), respectively. All plots assume asymmetric power sharing P ∗
1 = 3P ∗

2 where
P ∗
1 + P ∗

2 = 3 kW. In all scenarios in (b) and (c), niP
∗
i = 2.5V for i = 1, 2..

Λ−1 + η11T , η := h
1−hλTΛ−1λ , and î = ΛvEµ(s) −

αλvλ
T
vEµ where λv := ( 1

r1+Rv
. . . 1

rN+Rv
)T, and

Λv = diag( 1
r1+Rv

, . . . , 1
rN+Rv

). From η = ZL and
α = η

1+ηλT
v 1 = ZL

1+ZLλT
v 1 , it follows that in steady state

ik = (
∑m
i=1

Em
rm+Rv

) 1
rk+Rv

γk sin(ωot + φk), where γk =√
(βk − |α(jωo)| cos∠α)2 + |α(jωo)2| sin(∠α)2,

βk = Ek
(
∑m
i=1

Em
rm+Rv

)
and tanφk ==

sin∠α

cos∠α− βk
|α(jωo)|

.The

theorem results on expanding tan(φk−φj) using the above
expression for tanφk, where 1 ≤ k, j ≤ N .
Proof of Theorem 5: Note that

∑N
k=1 P

∗
k = (E∗)2

2RL
+ ∆

where ∆ represents the mismatch in power. Assuming all
the power generated is consumed by the load and that droop-
laws are being followed we have:

V 2
L

2RL
=

N∑
k=1

Pk =
(E∗)2

2RL
+ ∆ + (E∗−VL)(

∑
k

1

nk
). (18)

Define the variable x := E∗ − VL. Then

x2

2RL
=

(E∗ − VL)2

2RL
=

1

2RL
[V 2
L + (E∗)2 − 2VLE

∗]

Substituting V 2
L

2RL
from (18) into above equation we have

x2

2RL
− (

E∗

RL
+m)x−∆ = 0.

The theorem statement is a direct consequence of solving the
above quadratic equation and obtaining the viable solution
for VL.
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