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Abstract—We present a decentralized control strategy that
yields switch interleaving for parallel-connected dc–dc buck con-
verters. Compared to state-of-the-art methods that are distributed
at best, the proposed architecture requires no communication, and
hence, presents a variety of advantages with regard to reliability,
modularity, and cost. The method is based on the digital imple-
mentation of the dynamics of a Liénard-type oscillator circuit as
the controller for the converters. Each controller only requires
the locally measured output current to synthesize the pulsewidth
modulation (PWM) carrier waveform. The intrinsic electrical
coupling between converters drives the nonlinear-oscillator-based
controllers to converge to an interleaved state with uniform phase
spacing across PWM carriers, independent of the number of
converters, the load, and initial conditions. We provide analytical
guarantees for existence and stability of the interleaved state as
well as extensive hardware results for a system of five 120 W 48 V-
to-12 V dc–dc buck converters that demonstrate convergence to the
interleaved state in the face of a variety of large-signal disturbances.

Index Terms—Decentralized control, multiphase converters,
nonlinear control, switch interleaving.

I. INTRODUCTION

THIS paper presents a decentralized switch-interleaving
control strategy for multiphase dc–dc buck converters

serving a common load. The architecture presents no single
point of failure and requires no communication between the
converters. The proposed controller is grounded on the dynam-
ics of a type of nonlinear oscillator engineered such that the
interleaved state is characterized by the minimum stored en-
ergy in a collection of such nonlinear oscillators. Convergence
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to the interleaved state is spontaneously driven by the intrin-
sic interconnection of the underlying nonlinear dynamical sys-
tems through the electrical network and without the need for
an explicit communication bus [see Fig. 1(a)]. In addition to
establishing analytical guarantees for convergence and stability,
we provide experimental results for a parallel-connected buck
converter system to validate the concept.

Interleaved multiphase architectures are increasingly emerg-
ing as the norm in a variety of applications including (but not
limited to) dc front-end converters in renewable energy sys-
tems and microgrids [3], [9], [10], voltage regulator modules
[11]–[13], and power-factor-correction circuits [14], [15]. Many
compelling reasons underscore the widespread adoption of in-
terleaved multiphase converters including: cost (canceling rip-
ple reduces the requirements for passive filters), reliability (bulk
capacitors used in filters are recognized reliability bottlenecks),
modularity (the system can operate in a lower power mode with a
reduced number of converters), power ratings (current-handling
capacity of parallel systems is higher than an individual con-
verter), and efficiency (converters can be turned on or off to
minimize losses depending on the load to be served; this is
commonly referred to as phase shedding). Decentralized inter-
leaving realizes all the benefits of multiphase dc–dc converter
systems mentioned previously, with the bonus that interleaving
can be guaranteed with no single point of failure and is indepen-
dent of load fluctuations and initial conditions. Furthermore, the
decentralized nature of the proposed controller enables a decou-
pling of the real-time interleaving operation from supervisory-
level routines such as droop control or phase shedding, which
can then be realized with low-bandwidth signals during normal
operation.

State-of-the-art approaches to switch interleaving are cur-
rently (at best) distributed, requiring an explicit communication
bus, as shown in Fig. 1(b) [1], [2]. In fact, a majority of the
literature in this domain has focused largely on centralized ap-
proaches [see Fig. 1(c)], which have reliability, implementation,
and modularity bottlenecks [3]–[8]. The method proposed in
this work [see Fig. 1(a)] allows interleaving without any explicit
communication channel and thereby enables modular, reliable,
and low-cost multiphase architectures.

Nonlinear oscillator dynamics form the basis of the proposed
control strategy. In particular, we program the discretized
second-order dynamics of a particular type of nonlinear
oscillator—called the Liénard oscillator—on the digital con-
troller of each converter. The locally measured inductor current
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Fig. 1. Proposed approach to interleaving is (a) decentralized, representing a paradigm shift since it is communication free with no single point of failure.
State-of-the-art methods for interleaving are (b) distributed, requiring a communication bus [1], [2]. Majority of the literature on interleaving focuses on switch
timing managed (c) centrally [3]–[8]. (Current waveforms not shown in (b) and (c) for conciseness.) (a) Decentralized. (b) Distributed. (c) Centralized.

for each converter acts as an input to the oscillator, and the os-
cillator dynamical states are used to generate the corresponding
triangular pulsewidth modulation (PWM) carrier (see Fig. 2 for
details). Liénard oscillator dynamics have been examined in a
variety of scientific and engineering disciplines [16]. Tangen-
tially related to the application at hand, they have been used to
realize decentralized real-time synchronization of ac voltages
for inverters in microgrids [17]–[21], adaptive synchronization
of grid-connected three-phase inverters [22], and carrier wave
synchronization for three-phase parallel-connected inverters to
suppress circulating currents [23]. While these studies exam-
ined synchronization of waveforms in the context of ac systems,
here, we focus on the dual problem of interleaving PWM
waveforms for dc systems. Theoretical foundations for this
work are grounded on passivity-based frameworks to examine
the networked dynamics of nonlinear oscillators. This is an
expansive research topic; see, e.g., [24]–[28].

The theoretical and experimental results in this paper are pre-
sented with buck converters serving as the topology of choice in
the parallel-connected multiphase system. However, it must be
noted that the analytical approach and the feedback-synthesis
method developed here can conceivably be applied to other con-
verter topologies and network architectures. Focusing on the
application at hand, while the proposed nonlinear controllers
generate the interleaved PWM carriers, we leverage outer-loop
droop controllers to ensure decentralized proportional power
sharing [3]. From a theoretical vantage point, the main contri-
bution of this paper is to establish analytical guarantees for the
existence and stability of the interleaved solutions. To that end,
we build a model for the parallel-connected converter system
based on the collective dynamics of the oscillators, buck convert-
ers, and the electrical network. Then, we leverage a coordinate
transformation of the system dynamics to polar coordinates to
extract amplitude and phase information of the PWM wave-
forms. Following this, we enumerate and discuss the stability of
equilibria that result from the involved dynamics.

This paper builds on our preliminary work in [29], where a
similar feedback strategy was validated with numerical simu-
lations for an idealized setup involving an ideal voltage-source

load. Here, we provide several extensions with regard to both
theory and application. First, we propose an alternative to an
acausal derivative term that was a part of the feedback strategy
in [29]. Furthermore, we generalize the load model from an ideal
voltage source to a more realistic RC load behind a Thévenin
resistance. Patently, the most significant contribution over [29]
is experimental validation of the proposed control strategy on a
hardware testbed comprising five identical 48 V-to-12 V buck
converters rated at 120 W switching at 20 kHz. Experimental
results demonstrate spontaneous convergence to the interleaved
state through a variety of large-signal disturbances including
startup from arbitrary initial conditions, load steps, and
converter addition. While the analysis considers an ideal,
symmetric, and uniform setting with equal dc-bus voltages and
equal values for filter elements, the exhaustive experimental
validation establishes robustness of the control strategy to par-
asitics, and parametric and input variations that are inescapable
in any hardware implementation.

The remainder of this paper is organized as follows. Section II
develops a model for the system of buck converters. Building
upon that, we establish the nature and stability of solutions in
Section III. We validate our analysis using a hardware proto-
type that implements our controller for parallel-connected buck
converters in Section IV. Finally, we conclude in Section V by
providing a few key directions for future work.

II. SYSTEM DESCRIPTION AND MODELING

In this section, we describe the model of the oscillator-
controlled dc–dc buck converters that are connected in parallel
and are supplying a common load. Using circuit laws and dy-
namics of the oscillators, we derive a coupled-oscillator model
and then transform it to polar coordinates to extract phase infor-
mation of the PWM waveforms.

A. Controller Description

The system architecture is illustrated in Fig. 2. It is com-
posed of N parallel dc–dc buck converters indexed in the set N
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Fig. 2. System of parallel-connected buck converters with local controllers.
The proposed controller has the dynamics of a nonlinear Liénard-type oscillator
circuit, which takes the converter output current as feedback and generates the
triangular PWM carrier at each converter by using a linear combination of its
states. Droop control ensures decentralized power sharing.

supplying a common load. The controller for each converter
(labeled converter-level controller for the first converter and
simply as controller for the others) is decentralized and com-
posed of two parts: 1) a discretized version of the second-
order differential equation corresponding to the Liénard-type
oscillators (labeled as Liénard oscillator for the first converter)
that is responsible for switch interleaving; and 2) a slower-
timescale droop-control-based voltage-regulation method
(labeled as droop for the first converter).

The virtual-oscillator inductor and capacitor, L and C, are
selected such that the oscillator resonant frequency coincides
with the switching frequency ωsw = 1/

√
LC (the switching pe-

riod is denoted by Tsw = 2π/ωsw). Furthermore, ensuring that√
L/C � 1 renders the jth oscillator voltage vC j (t) to be

nearly sinusoidal [18]. The oscillator further consists of a neg-
ative conductance −σ and a voltage-dependent current source
αv3

C j , where α ∈ R is a positive real constant. Next, the jth
comparator and integrator act on a scaled sum of vC j (t) and
iC j (t) to yield the PWM carrier (the comparator creates a square
wave and the integrator produces the carrier). Finally, the switch
pulses are generated in a typical fashion, where the carrier and
duty ratio Dj are fed to a comparator and associated logic. This
proposed structure for carrier generation is independent of the
controller that governs the duty ratio. The outer-loop controller
that generates the duty ratio runs on a much slower time scale.
Here, we consider a prototypical droop controller that yields
the duty ratio for each converter (details are in Section II-C).
Each converter has an inductive output filter Lf (with parasitic
resistance Rf ) and dc input voltage Vdc . The load is modeled as
a parallel combination of a resistor Rload and a capacitor Cload

behind a Thévenin resistance RTh .

B. Parallel-converter System Model in Polar Coordinates

To analyze interleaving, it is necessary to describe the evo-
lution of the phases corresponding to the switching signals of
the converters controlled as shown in Fig. 2. Kirchhoff’s laws
yield the following dynamics for the inductor current iLj and
capacitor voltage vC j for the jth oscillator in each controller:

L
diLj
dt

= vC j , C
dvC j
dt

= (σvC j − αv3
C j ) − iLj + iinj .

(1)
Here, iinj denotes the input current that serves as feedback to
the oscillator (see Fig. 2). Defining ε :=

√
L/C, xj := εiLj ,

and yj := vC j , the above dynamics can be rewritten as

ẋj = ωswyj , ẏj = −ωswxj + εωsw
(
σyj − αy3

j

)
+ εωsw iinj .

(2)
Note that xj and yj are orthogonal. To extract the phase dy-
namics, we define the amplitude and instantaneous phase angle
corresponding to (2) as follows:

rj :=
√
x2
j + y2

j , φj := arctan
(
xj
yj

)
. (3)

To simplify analysis, we will focus on the phase-angle offset
θj = φj − ωswt, which quantifies the angle difference with re-
spect to a nominal reference frame rotating at the switching fre-
quency ωsw. Algebraic and trigonometric manipulations applied
to (2) yield the following amplitude and phase-offset dynamics:

ṙj = εωswσrj cos2 (ωswt+ θj ) − εωswαr
3
j cos4 (ωswt+ θj )

+ εωswiinj cos (ωswt+ θj ) ,

θ̇j = −εωsw

2
(
σ − αr2

j cos2 (ωswt+ θj )
)
sin (2ωswt+ 2θj )

− εωsw

rj
iinj sin (ωswt+ θj ) . (4)

Given that (4) is time varying, it is difficult to analyze. We
average it over one switch cycle to obtain the following averaged
model:1

ṙj =
εωsw

2
(
σrj − 3αr3

j

)
+
εω2

sw

2π

∫ T sw

t=0
iinj cos(ωswt+ θj )dt

θ̇j = − εω2
sw

2πrj

∫ T sw

t=0
iinj sin(ωswt+ θj )dt (5)

where rj and θj are the averaged states. The derivation of (5)
uses integration by parts and ignores second-order (i.e., O(ε2))
terms (see [21] for details on a similar proof for a different
application). Furthermore, it can be shown that in the parametric
regime ε� 1, where waveforms are sinusoidal, the original
oscillator dynamics can be approximated by the averaged model
with O(ε) error [21], [30], [31].

1For a time-varying dynamical system ẋ = εf (x, t, ε), where vector field
f (x, t, ε) is time periodic with period T > 0 (i.e., f (x, t, ε) = f (x, t + T, ε)),
and 0 < ε � 1, the associated time-averaged dynamical system is given by

ẋ = εf (x) = ε 1
T

∫ T
τ =0

f (x, τ, 0)dτ. The solution of the averaged system is
O(ε) close to the solution of the original system, i.e., ||x(t, ε) − x(εt)||2 =
O(ε) ∀t ∈ [0, t∗], for some t∗ > 0 for which unique solutions exist for both
systems and assuming ||x(0, ε) − x(0)||2 = O(ε) [30].
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C. Feedback and Coupled-oscillator Dynamical Model

The feedback for the oscillators is through the current iinj ,
which, as shown in Fig. 2, is constructed as follows:

iinj = κij (6)

where κ > 0 is a feedback gain and ij is the output current
of the buck converter. Furthermore, the signal used to gener-
ate the PWM carrier wave, wj , is built as the following linear
combination of the virtual-oscillator dynamic states:

wj =
1
C
iC j + γvC j (7)

where

γ :=
Rf

Lf
. (8)

It turns out that the above strategy is equivalent to constructing
the feedback as

iinj = κ

(
γij +

dij
dt

)
(9)

with the PWM carrier wave picked to be the virtual-capacitor
voltage and the coefficient of nonlinearity for the voltage-
dependent current source in the oscillator accordingly rescaled
as follows:

wj = vC j , α′ =
α

√
ω2

sw + γ2
. (10)

For subsequent developments, we transition to work in this
equivalent system for analytical convenience, since the feedback
in (9) brings forth the coupling between the oscillators [see (51)].
However, while the feedback and PWM carrier wave genera-
tion through (9) and (10) facilitate analysis, they involve an
acausal derivative term that challenges implementation. There-
fore, the hardware implementation is built with the priorly intro-
duced feedback and PWM carrier wave generation method in (6)
and (7). We prove the equivalence of (6), (7) and (9), (10) in
Appendix A.

The duty-ratio commands for the individual oscillators are
generated using droop control. The droop relation for the jth
buck converter yields the following voltage reference:

Vref j = Vnom −mij (11)

wherem > 0 is the droop slope, and Vnom is the nominal output
voltage. The buck converter achieves the target voltage (Vref j )
through a proportional–integral regulator with a feedthrough
term. In particular, the duty cycle is governed by

VdcDj = kp (Vref j − vout) +
∫
ki (Vref j − vout) dt+ Vref j

(12)
where kp and ki are the proportional and integral gains, respec-
tively, and vout is the output voltage (see Fig. 2). In typical
implementations, kp and ki are picked so that the duty-ratio
commands vary on a much slower timescale in comparison to
the switching period [3].

A variety of other advanced outer-loop control techniques
have been proposed in the literature to improve attributes such
as transient response, current distribution, and output-voltage

regulation [32], [33]. Along these lines, accurate current shar-
ing is critical in multiphase architectures, since it can prevent
inductor saturation and limit thermal stress [34]. With that be-
ing said, our approach to interleaving the switching waveforms
is decoupled from—and hence agnostic to—outer-loop control
strategies; in this work, we adopt the classical droop-control
strategy discussed above without loss of generality.

With the feedback strategy adopted in (6) and (7), and droop
control for generating the duty cycle shown in (12), it emerges
that the dynamics in (5) boil down to the following:

ṙj = hj (rj ) − εωswRTh

√
ξ2 + χ2

N∑

k=1

ζk cos(θjk + δ)

θ̇j =
εωswRTh

√
ξ2 + χ2

rj

N∑

k=1

ζk sin(θjk + δ) (13)

where we define θjk := θj − θk , and

ζj :=
Vdc sin(Djπ)κ

πLf

L2
f

(ωswLf )2 +R2
f

(14)

hj (rj ) :=
εωsw

2
(
σrj − 3αr3

j + 2ζj
)

(15)

ξ :=
ψ1 (1 + η)−1

ωswLf

(
1 − ψ1 (1 + η)−1 ψ2

) (16)

χ :=
(1 − η)−1

ωswLf

(
1 − ψ1 (1 + η)−1 ψ2

) (17)

δ := sin−1

(
ξ

√
ξ2 + χ2

)

(18)

with η, ψ1 , and ψ2 given by

η :=
(

1 − 1
ω2

swRloadCload

)−1
N

ω2
swCloadLf

(19)

ψ1 :=
Rf +NRTh

ωswLf
− η

ωswRloadCload
(20)

ψ2 := −Rf +NRTh +NRload

ωswLf
+ ηωswRloadCload . (21)

The derivation of the model in (13) hinges on the equivalence
between the feedback and PWM carrier wave construction in (6)
and (7) to that in (9) and (10) as shown in Appendix A. Building
on this, we use integration by parts and a suite of circuit-theoretic
notions including Kirchhoff’s voltage law to describe the net-
work dynamics, dynamics of the load voltage, a Fourier-series
representation of the switching signal, and the input–output be-
havior of the dc–dc buck converters to arrive at (13). A sketch
of this derivation is provided in Appendix B.

III. EQUILIBRIA AND STABILITY

In this section, we enumerate different equilibria that result
from the collective dynamics in (13) and comment on the sta-
bility of each. To that end, we will first establish a dynamical
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Fig. 3. Equilibria for the coupled oscillator dynamics (22). (a) Bi-cluster synchronous state. (b) Phase-synchronous state. (c) Generalized interleaved state.
(d) Symmetric-interleaved state. Recall that θj is the averaged phase-angle offset (with respect to a nominal reference frame rotating at the switching frequency)
corresponding to the voltage of the virtual capacitor, vC j (and hence of its corresponding carrier waveform) for the jth oscillator. Furthermore, θj k = θj − θk .

model that collects and compactly represents all the individual
oscillator dynamics in (13).

To evaluate stability of different equilibria, we make the
assumption that Dj = Dk ∀j, k ∈ N , which is true in the
averaged sense and for time horizons pertinent to stability anal-
ysis of the interleaved state. From (14), we see that this im-
plies ζj = ζk =: ζ ∀j, k ∈ N , which further renders hj (rj ) =:
h(rj ), ∀j ∈ N . Furthermore, we also assume δ = 0, which
translates to an ideal setup where the Thévenin resistance on
the load side is negligibly small and the switching frequency is
high [see (18)]. With these assumptions in place, the dynamics
in (13) can be compactly and collectively expressed as

ṙ = H − ρC1N , θ̇ = ρR−1 S1N (22)

where r = [r1 , . . . , rN ]T , θ = [θ1 , . . . , θN ]T , and H ∈ RN ,
N ×N real matrices R,C, S, and ρ ∈ R are given by

[H]j = h(rj ), R = diag{r} (23)

[C]j� = cos(θjl), [S]j� = sin(θjl) (24)

ρ = εωswRThζ
√
ξ2 + χ2 . (25)

To clarify the notation above, [X]jk represents the entry in the
jth row and the kth column of matrix X; for vector x, diag{x}
denotes the diagonal matrix obtained by stacking elements of x
on the main diagonal, and 1N denotes the length-N vector with
all ones.

Note that the phase dynamics in (22) are not defined for
rj = 0; indeed, the very notion of a radius is ill-posed when
rj ≤ 0. Hence, we first establish conditions such that the radii
remain greater than zero. In particular, when the number of
oscillators is upper bounded as follows:

N <
1

RTh
√
ξ2 + χ2

(26)

the set

I :=
{(
r, θ
) ∈ RN

≥0 × TN : rj > 0,∀j ∈ N} (27)

where TN denotes the N -dimensional torus, is positively in-
variant with the designed feedback (6). To see this, consider

that from the amplitude dynamics in (22), we obtain

ṙj = εωsw

(
σrj − αr3

j

2
+ ζ −RTh

√
ξ2 + χ2

N∑

k=1

ζ cos(θjk )

)

≥ εωsw

2
(
σrj − αr3

j

)
+ εωswζ

(
1 −NRTh

√
ξ2 + χ2

)
.

(28)

So, if (26) holds, then

ṙj ≥ εωsw

2
(
σrj − αr3

j

)
+ r◦ (29)

where r◦ is a positive constant. Clearly, ∀ rj <
√
σ/α, ṙj > 0,

which renders I to be positively invariant.
From the above discussion, we can conclude that R has all

positive entries. At equilibrium, where θ̇ = 0N (0N denotes the
length-N vector with all zeros), we have from (22) that

S1N = 0N . (30)

Given the definition of matrix S in (24), one can identify differ-
ent types of equilibria that satisfy the constraint in (30) (sketched
on the phase plane in Fig. 3): a) bi-cluster synchronous state,
b) phase-synchronous state, c) generalized interleaved state,
and d) symmetric-interleaved state: the desired state where the
phases of the PWM carriers are uniformly spaced apart. We
formally define and study these next, and in each case, we vali-
date that the phases indeed satisfy the constraint for equilibria,
namely (30). We also comment on the stability of each.

A. Bi-cluster Synchronous State

The coupled system is said to be in the bi-cluster synchronous
state if the phases evolve as

θj − θk = mπ ∀j, k ∈ N ,∀m ∈ Z. (31)

The bi-cluster synchronous state is illustrated in Fig. 3(a).
Validity: To see that this is indeed an equilibrium, note

from (24) that [S]j� = sin(θjl) = 0, ∀j, k ∈ N when θj −
θk = mπ, ∀m ∈ Z. This further implies that phases defined
by (31) satisfy S1N = 0N , and hence, the bi-cluster syn-
chronous state is an equilibrium of the dynamics (22).

Stability: Using linearization-based arguments, we show that
this bi-cluster synchronous state is locally unstable unless the
number of oscillators in the two clusters is equal. To establish
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this, consider that the Jacobian of the linearized version of (22)
around equilibria θj − θk = mπ, wherem ∈ Z, has the follow-
ing block-diagonal form:

J =

[
JA 0N×N

0N×N JD

]

(32)

where 0N×N is the N ×N matrix with all entries equal to 0.
The entries of JA and JD are specified as

[JA]j� =
{
h′(r∗j ), if j = �

0, if j �= l

[JD]j� =

⎧
⎪⎨

⎪⎩

− ρ
r ∗j
, if j �= l, θj� = 2mπ

ρ
r ∗j
, if j �= l, θj� = (2m+ 1)π

−∑N
�=1,� �=j [JD]j� , if j = �,

where m ∈ Z and r∗j is the equilibrium radius for the jth oscil-
lator. Since J is block diagonal, its eigenvalues are those of JA
and JD . In the following, we focus the analysis on the eigen-
values of JD . Since θj − θk = mπ, the phases of the oscillators
belong to one of the two clusters on the circle (depending on
whether m is odd or even). Two cases need attention:

1) The sizes of the two clusters differ by more than one:
Denote ej to be the length-N unit basis vector with 1 at
the jth entry and zeros elsewhere. Denote � to be the index
of any node in the bigger cluster. The diagonal entries
of JD corresponding to oscillators in the bigger cluster
are positive, and since eT

� JDe� > 0 , it is not negative
semidefinite; therefore, JD must have at least one positive
eigenvalue [35].

2) The sizes of the clusters differ by one: The diagonal entries
are either 0 (for the nodes in the bigger cluster) or −2
(for the nodes in the smaller cluster). Thus, there exists a
symmetric principal minor of order 2 (corresponding to
two nodes in distinct clusters) of the form

ρ

2
·
[

0 ±1
±1 −2

]

which features a positive eigenvalue. Therefore,JD cannot
be negative semidefinite [35] in this case as well.

In conclusion, JD (and hence, J) has at least one eigenvalue
with positive real part. This establishes the local instability of
clusters, where the phase equilibria satisfy θj − θk = mπ, and
the number of oscillators in each cluster is not the same.

B. Phase-synchronous State

This corresponds to the state where the phases of all oscilla-
tors are perfectly synchronized:

θj = θk ∀j, k ∈ N . (33)

This state is illustrated in Fig. 3(b). Note that it is recovered as
a special case from the bi-cluster synchronous state for m = 0.

Validity: To see that this is indeed an equilibrium, note
from (24) that [S]j� = sin(θjl) = 0, ∀j, k ∈ N when θj =
θk . This further implies that phases defined by (33) satisfy
S1N = 0N , and hence, the phase-synchronous state is indeed
an equilibrium of the dynamics (22).

Stability: Note that the phase-synchronous state is recovered
from the bi-cluster synchronous state when m = 0. Therefore,
the stability result from Section III-A applies in this case as well.
In particular, for the case m = 0 , JD in (33) is a Laplacian ma-
trix of a complete graph and, therefore, is positive semidefinite.
This establishes that the phase-synchronous state is locally un-
stable.

C. Generalized Interleaved State

This is a generalized notion of the symmetric-interleaved
state and captures the setting where the phases of the oscillators
evolve functionally constrained as follows:

N∑

j=1

ejθj = 0 (34)

where j =
√−1. This state is also known as the phase-balanced

state, and it is widely studied in the coupled-oscillator litera-
ture [36]. Closer to the application at hand, it was investigated
for an asymmetric interleaving application [7], where the first
harmonic was eliminated to minimize the current ripple. The
generalized interleaved state is illustrated in Fig. 3(c).

Validity: Unlike the bi-cluster synchronous state and the
phase-synchronized state, in this case, S is not a null matrix,
and therefore, condition (30) is not satisfied trivially. Nonethe-
less, it turns out that whenS is not a null matrix, thenS1N = 0N
if and only if C1N = 0N (see [27, Proposition 2]). For the gen-
eralized interleaved state where

∑N
j=1 ejθj = 0, it is true that

C1N = 0N and S1N = 0N , and therefore, this indeed corre-
sponds to an equilibrium of the phase dynamics in (22).

Stability: We construct a directed graph to establish the na-
ture of equilibria in the oscillator dynamics (22). Let N nodes
of the graph denote the oscillators, and if the vector field gov-

erning θ̇j has a θjk term (i.e., the evolution of the jth oscillator
dynamics depends on the dynamics of the kth oscillator), then
there is an edge between nodes j and k. The phase dynamics
in (22) can be compactly recast as follows:

θ̇ = R−1B sin(BTθ) (35)

where B ∈ RN×(N2 ) is the edge-oriented incidence matrix
of the underlying complete graph. Furthermore, with regard
to notation, for θ = [θ1 , . . . , θN ]T ∈ TN , sin(θ) := [sin(θ1),
. . . , sin(θN )]T and cos(θ) :=[cos(θ1), . . . , cos(θN )]T .

We introduce a coordinate change to θ̃ = BTθ ∈ R(N2 ),
which captures angle differences between the oscillators. In this
new set of coordinates, the phase dynamics can be written as

˙̃
θ = ρBTR−1B sin θ̃ . (36)

Consider the following potential function:

V (r, θ̃) = −
N∑

j=1

∫ rj

s=0
h(s)ds+ 1T

NRB cos θ̃ (37)

from which, it follows that

V̇ (r, θ̃) = −
(
H − ρB cos θ̃

)2
− ρ(sin θ̃)TBTRR−1B sin θ̃.
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Note that V̇ (r, θ̃) ≤ 0, since it is the sum of two quadratic
terms with a negative leading sign. Thus, the sublevel sets of V
are compact (closed due to continuity and bounded as V (r, θ̃)
is radially unbounded).

Finally, by LaSalle’s invariance principle [30], all trajectories
starting in I [defined in (27)] converge to the subset identified by
V̇ = 0, i.e., amplitudes and phases are such that B sin θ̃ = 0N
(which is true if and only ifS1N = 0N , which impliesC1N = 0
when S is not a null matrix) and H − ρC1N = 0 (which gives
H = 0N when S is not a null matrix). As discussed earlier,
S1N = 0N gives rise to either the bi-cluster synchronous state
(of which the phase-synchronous state is a special case) or the
generalized interleaved state. We have already established that
the bi-cluster synchronous state is locally unstable. Therefore,
almost all trajectories must eventually converge to the general-
ized interleaved state.

D. Symmetric-interleaved State

The multiphase system is said to be in a symmetric-
interleaved state if the phases of the coupled oscillators evolve
uniformly spaced apart as follows:

θj = j
2π
N

+ θ◦ (mod 2π) ∀j ∈ N , 0 ≤ θ◦ ≤ 2π. (38)

The symmetric-interleaved state is illustrated in Fig. 3(d).
Validity: We established previously that the generalized in-

terleaved state [where phases are governed by (34)] is indeed
an equilibrium of the phase dynamics (22). Notice that the
symmetric-interleaved state, where phases are governed by (38),
is a special case of the generalized interleaved state and, there-
fore, satisfies the condition (30) as well.

Stability: To establish whether the interleaved state is locally
stable, we begin by shifting the amplitude and phase dynamics
from (22) to the origin as follows:

μj = rj − r∗, ϕj = θj − j
2π
N

(39)

where r∗ denotes the equilibrium radius, which solves h(r∗)=0.
Now, the dynamics of the coupled system (22) around this equi-
librium can be written as

μ̇j = h(r∗ + μj ) − ρ

N∑

k=1

cos
(

2π(j − k)
N

+ ϕjk

)

ϕ̇j =
ρ

r∗ + μj

N∑

k=1

sin
(

2π(j − k)
N

+ ϕjk

)
(40)

where ϕjk := ϕj − ϕk . We focus on the phase dynamics and
leverage the fact that μj and ϕjk are small quantities as we
are interested in the behavior around the neighborhood of the
interleaved state, and therefore, sinϕjk ≈ ϕjk , cosϕjk ≈ 1 and
(r∗ + μj )−1 ≈ 1

r ∗ (1 − μj
r ∗ ). With these simplifications in place

and ignoring second-order terms likeμjϕjk , the phase dynamics
reduce to

ϕ̇ =
ρ

r∗
Jϕ (41)

Fig. 4. Photograph of the experimental prototype: five dc–dc converters and
associated controller boards. Note that there is no communication between
controllers.

where ϕ := [ϕ1 , . . . , ϕN ]T ∈ TN and J is a symmetric circu-
lant matrix with entries given by

[J ]j� =
{−1 if j = �
− cos

( 2π
N (j − �)

)
, if j �= �.

Since J is a circulant matrix, its eigenvalues are given by

�j (J) =
N−1∑

k=0

cos
(

2πk
N

)
Ωk
j (42)

where Ωj = ej2πj/N denotes one of theN th roots of unity. Note
that two of these eigenvalues are −N/2 and the rest are zero.
Thus, the linearized phase dynamics around the symmetrically
interleaved equilibrium are marginally stable.

IV. EXPERIMENTAL VALIDATION

The proposed approach is validated with a hardware prototype
of parallel-connected dc–dc buck converters with independent
field-programmable gate array controllers, as shown in Fig. 4.
The prototype consists of five independent converters rated at
120 W each, stepping down from 48 to 12 V at 20 kHz. The
parameters for the controllers along with specifications and rat-
ings of the prototype are listed in Table I. In this section, we
first outline the design procedure that was followed to select
the oscillator (controller) and converter parameters, following
which we provide experimental results.

A. System Parameters and Controller Design

In this section, we discuss the rationale for the design
choices listed in Table I. The oscillator parameters L and C
are tuned to the switching frequency, i.e., 1/

√
LC = ωsw =

2π × 20 × 103 rad/s, while maintaining the quasi-harmonic
regime, i.e.,

√
L/C = ε� 1. We chose ε = 0.19 in our im-

plementation. Setting σ > 0 satisfies the Liénard condition for
sustaining oscillations [16], and α = 2σ/3 yields a sinusoidal
oscillation of unit amplitude for the oscillators, which aids in
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TABLE I
SPECIFICATIONS, PARAMETERS, AND RATINGS FOR THE EXPERIMENTAL PROTOTYPE

regularizing the design. The current gain κ > 0 is necessary for
interleaving and is chosen to be 10. (Empirically, we observe
that very small values ofκ result in slow convergence to the equi-
librium state, while very large values of κ induce nonsinusoidal
oscillator states with no convergence guarantees.) The droop
controller gains kp and ki are selected so that the time constant
of the controller is about 5 s, and there is a clear time-scale sepa-
ration from the switching period. Furthermore, for each individ-
ual buck converter, Lf was selected to guarantee the continuous
conduction mode at the selected operating point, andCload is just
sufficiently large to establish a constant voltage at the load side.
Finally, we also verify that the sufficient positive invariance
condition (26) derived in Section III is met so that phase dy-
namics are well-posed, i.e., NRTh

√
ξ2 + χ2 < 1. Notice that

in the ideal setup as RTh → 0, the condition is always satisfied
for allN . The current setup with the chosen physical parameters
satisfies this condition up to 41 units.

Tolerances of various components utilized in the hardware
setup are also listed alongside nominal values in Table I. While
the analysis presumed an ideal and symmetric setup, the exper-
imental results provided subsequently establish the robustness
of the approach to a variety of parametric variations (including
the ones in Table I that are readily quantifiable through values
from datasheets).

We conducted four experimental tests to validate the per-
formance and robustness of the proposed interleaving control
method: 1) startup of five units from arbitrary initial conditions;
2) addition of one unit to four units in the steady state; 3) a load
step applied to five units in the steady state; and 4) unit addition
to a nonsymmetric network with lossy lines.

The setup and experiments listed above are sketched in Fig. 5.
Next, we provide results from these experiments and demon-
strate that, in each case, the proposed controller ensures inter-
leaving in the steady state without any communication between
converters.

Fig. 5. Circuit diagram illustrating experiments performed. (a) Startup from
arbitrary initial conditions. (b) Addition of one converter to system. (c) Load
step. (d) Unit addition in a nonsymmetric network with parasitics (in this case,
converters continue to sense local output voltages for droop control even though
this is not explicitly depicted in the figure).

B. Startup From Arbitrary Initial Conditions

First, we consider the startup scenario in which five units are
initiated simultaneously, each with arbitrary initial conditions.
The dynamics of the load current and the ac components of
the phase currents for this case are shown in Fig. 6. The phase
currents ij of the individual converters at the turn-on instant are
arbitrarily spaced, which results in a larger ripple in iload. After
approximately 40 ms, the phase currents of the five converters
settle to the interleaved state with 72◦ = 360◦/5 phase offset,
and the ripple in iload is visibly reduced.

C. Unit Addition

Next, to demonstrate the plug-and-play nature of the proposed
control strategy, we investigate system performance when an
additional converter is added. As shown in Fig. 7, the system is
initialized in the steady state with four parallel units with phase
currents that are 90◦ = 360◦/4 out of phase with adjacent units.
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Fig. 6. (a) Five buck converters are started from arbitrary initial conditions with the designed oscillator-based controllers. (b) System achieves symmetric
interleaving with 72◦ = 360◦/5 phase spacing, and the droop controller maintains balanced currents in each of the five units in steady state.

Fig. 7. One additional buck converter unit is added to four functioning units. The phase currents ij automatically transition from having (a) 90◦ = 360◦/4 phase
shift to (b) 72◦ = 360◦/5 phase shift.

After adding an additional fifth unit, the system reaches the
interleaved state in approximately 6 ms with each phase current
now 72◦ (360◦/5) out of phase with adjacent units. The benefits
of interleaving with additional units are also evident in reducing
the load-current ripple. Again, the droop controller successfully
maintains current sharing before and after the addition of the
fifth unit.

D. Load Step

We experimentally implemented a load step to validate the
robustness of the control method to typical operating transients.
As shown in Fig. 8, the load is changed from Rload = 1.6 Ω to

Rload = 1.3 Ω at t = 0 with five units connected. The system
maintains the interleaved state before and after the transient, as
indicated by the unchanged ripple magnitude in iload and the
unchanged 72◦ phase shift in phase currents ij .

E. Nonideal Output Parallel Configuration

Finally, in order to validate the robustness of the proposed
method to nonidealities in the parallel output configuration, we
implemented the circuit shown in Fig. 5, where deliberately in-
troduced resistors Rpar induce a nontrivial output impedance
to each converter. This eliminates the ideal parallel connection
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Fig. 8. To evaluate robustness to load variations, a load step from (a)Rload = 1.6 Ω to (b)Rload = 1.3 Ω at t = 0 is introduced with five units in steady state. The
convergence to the new steady state is almost instantaneous, and the system maintains the symmetric-interleaved state with 72◦ = 360◦/5 phase spacing between
converters.

Fig. 9. Addition of one unit to four units in steady state with the nonsymmetric setup and lossy network shown in Fig. 5. The phase currents ij automatically
transition from having (a) 90◦(360◦/4) phase shift to (b) 72◦(360◦/5) phase shift.

between the dc–dc converters. With this circuit, we executed the
task of adding one unit to four units in steady state. As shown
in Fig. 9, four units are initially interleaved with 90◦ = 360◦/4
degree phase shift in currents. When the fifth unit is added, the
system reaches the new interleaved state after approximately
8 ms, at which point the phase shifts automatically adjust to
72◦ = 360◦/5. Note from the figure that the ripple in the load
current reduces with the additional unit. The presence of the
nonidealities does increase the ripple (compared to the case
shown in Fig. 7) by approximately 50%. Regardless, this ex-
periment demonstrates the robustness of the method to achieve
interleaving even in the presence of modestly large nonidealities
in the output loading configuration. Moreover, these nonideali-
ties have a minimal impact on the droop controller and its ability
to ensure current sharing between the units.

V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paper, we proposed a decentralized control strategy
to achieve interleaving in a system of parallel-connected buck
converters. Our approach utilized a nonlinear-oscillator-based

controller that processes a local current measurement to gener-
ate the PWM carrier waveform. It offers enhanced reliability and
flexibility compared to existing algorithms for modular architec-
tures that are at best distributed in nature since there is no need
for external communication. A system of parallel-connected
buck converters with droop control was built as a hardware pro-
totype, and we experimentally demonstrated the efficacy of the
proposed control algorithm for modular plug-and-play operation
as well as robustness to load variations. Extending the analysis
to other dc–dc converter topologies and network architectures
is the focus of ongoing investigations.

APPENDIX A
EQUIVALENCE OF (6) AND (7) TO (9) AND (10)

Figure 10(a) illustrates the closed-loop system as described
by the system of equations (6) and (7): we refer to this as “sys-
tem (a)” subsequently. The capacitor voltages of the oscillators,
collected in the vector y, are used to generate signals inw, which
dictate the switching in the buck converters. This is done using
the linear time-invariant filter s+ γ (see (7) in Section II-C).

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 10,2022 at 21:47:01 UTC from IEEE Xplore.  Restrictions apply. 



SINHA et al.: DECENTRALIZED INTERLEAVING OF PARALLEL-CONNECTED BUCK CONVERTERS 5003

Fig. 10. Block-diagram representations of the interconnected system with the
equivalent coupled oscillator model dynamics (13). (a) Version that is imple-
mented in hardware. (b) Equivalent version leveraged for analysis.

Furthermore, Δ = GL(s)IN captures the linear component of
the nonlinear-oscillator dynamics, with GL(s) given by

GL(s) :=
εs

s2 − εσs+ ω2
sw
. (43)

The oscillator dynamics are obtained by placing this in feed-
back with the cubic nonlinearity αy3

j (1). The approach to de-
compose the dynamics of Liénard-type oscillators into linear
and nonlinear subsystems is commonly used for analysis, since
it permits the application of describing-function approaches that
extend frequency-domain methods to nonlinear systems [37].
In this particular case, the describing function for the feedback
static nonlinearity, αy3

j , is denoted by GNL(yj ). All of these
are collected in GNL(y) = diag{GNL(y1), . . . , GNL(yN )}. Fi-
nally,w feeds into a signum function with windowed integrators,
a droop controller that generates the requisite duty command for
power sharing, and a comparator with a carrier wave that gen-
erates the switching signals q(t), which when multiplied by
the dc-input voltage Vdc gives the switched voltages, vsw =
diag{Vdcq1 , . . . , VdcqN }. These dynamics described above are
captured in the frequency domain via the scalar transfer func-
tion block s+ γ and the describing function GPWM(w). Note
that GPWM(w) has a similar decoupled structure like GNL(y),
and it collects the individual describing functions on the diag-
onal, i.e., GPWM(w) = diag{GPWM(w1), . . . , GPWM(wN )}.
To close the loop, the feedback (function of the inductor currents,
i, in the buck converters) is described by Kirchhoff’s current
laws, captured by the admittance of the electrical network, de-
noted by Y (s), and matrixK = κIN , which is a diagonal static
transfer function that incorporates the current gains [see (6)].

Figure 10(b) shows the block diagram of the equivalent sys-
tem (from an input–output standpoint), described by the sys-
tem of equations (9) and (10): we refer to this as “system (b)”
subsequently. Notice that it differs from the original system in
Fig. 10(a) in two aspects: 1) the placement of the filter block
s+ γ, which now filters the feedback currents instead of the out-
put voltages and 2) the describing function for the nonlinearity,
denoted byG′

NL(y). This is due to the fact that the systems have
different coefficients α and α′ for their nonlinearities. Next, we
will derive the relationship between α and α′ to ensure that the
input–output behavior of the systems is the same.

Observe that the ij to wj relation in system (a) is given by

κGL(s)ij (s)
(s+ γ)

=
(

1 +GL(s) (s+ γ)GNL

(
wj (s)
(s+ γ)

))
wj (s)

(44)
and, similarly, the ij to wj relation in the equivalent system (b)
is described by

κGL(s)(s+ γ)ij (s) = (1 +GL(s)G′
NL (wj ))wj (s) . (45)

SinceGL(s) is a linear block, it commutes with the scalar block
s+ γ. Thus, for the systems in (44) and (45) to be equivalent,

(s+ γ)GNL

(
wj (s)
(s+ γ)

)
= G′

NL(wj (s)). (46)

Since ε� 1 by design, GL(s) has bandpass characteris-
tics with resonant frequency ωsw. Therefore, we can assume
wj = A cosωswt. Using the sinusoidal input describing func-
tion approach as outlined in [38] and [37], we have

GNL(yj ) =
3αA2

4
, G′

NL(yj ) =
3α′A2

4
. (47)

At s = jωsw,

(s+ γ)GNL

(
wj (s)
(s+ γ)

)
=

3αA2(jωsw + γ)
4(ω2

sw + γ2)
etan−1 (−γ/ω sw)

=
3αA2

4
√
ω2

sw + γ2
. (48)

Thus, for

α′ =
α

√
ω2

sw + γ2
(49)

both the systems (a) and (b) have equivalent input–output
behavior.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 10,2022 at 21:47:01 UTC from IEEE Xplore.  Restrictions apply. 



5004 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 34, NO. 5, MAY 2019

APPENDIX B
DERIVATION OF (13)

Denote the switching signal of the jth buck converter as
qj (t) ∈ {0, 1}. Kirchhoff’s voltage law indicates that

Vdcqj (t) −Rf ij (t) − Lf
dij
dt

−RThiload = vload (50)

where iload :=
∑N

j=1 ij . Recognizing (9), we can write

iinj = κ

(
Rf

Lf
ij +

dij
dt

)
= κ (Vdcqj (t) −RThiload − vload) .

(51)
Substituting for iinj from (51) into (5) yields

ṙj =
εωsw

2
(σrj − 3αr3

j ) −
∫ T sw

t=0

εω2
swκvload

2πLf
cos(ωswt+ θj )dt

+
εω2

swκ

2πLf

∫ T sw

t=0
Vdcqj (t) cos(ωswt+ θj )dt

− εω2
swRThκ

2πLf

∫ T sw

t=0
iload cos(ωswt+ θj )dt (52)

θ̇j = − εω2
swκ

2πrjLf

∫ T sw

t=0
Vdcqj (t) sin(ωswt+ θj )dt

+
εω2

swRThκ

2πrjLf

∫ T sw

t=0
iload sin(ωswt+ θj )dt

− εω2
swκ

2πLf

∫ T sw

t=0
vload sin(ωswt+ θj )dt. (53)

The PWM switching signal, qj (t), can be written as the
following series for a particular duty ratio Dj [39]:

qj (t) = Dj +
∞∑

m=1

2
mπ

sin(Djmπ) cos(m(ωswt+ θj )). (54)

Substituting for qj (t) from (54) into (52) yields

ṙj =
εωsw

2
(
σrj − 3αr3

j

)− εω2
swκ

2πLf

∫ T sw

t=0
vload sin(ωswt+θj )dt

+
εω2

swRThκ

2πrjLf

∫ T sw

t=0
iload sin(ωswt+ θj )dt+

εω2
swκVdc

2πLf

×
∞∑

m=1

∫ T sw

t=0

2 sinDjmπ

mπ
cos(m(ωswt+ θj )) cos(ωswt+θj )dt

(55)

=
εωsw

2
(
σrj − 3αr3

j

)
+
εω2

swκVdc sin(Djπ)
πLf

+
εω2

swRThκ

2πrjLf

∫ T sw

t=0
iload sin(ωswt+ θj )dt

− εω2
swκ

2πLf

∫ T sw

t=0
vload sin(ωswt+ θj )dt. (56)

In simplifying the second integral on the first line of (56), we
have leveraged the following: 1) θj (t) is O(ε) close to θj (t)
and 2) since integrals of sines and cosines evaluate to zero
over their period, only the fundamental harmonic remains in

the qj (t) expansion and the average of cos2(ωswt+ θj ) over its
time period is 1/2. Similarly, we get the following for the phase
dynamics:

θ̇j =
εω2

swRThκ

2πrjLf

∫ T sw

t=0
iload sin(ωswt+ θj )dt

− εω2
swκ

2πLf

∫ T sw

t=0
vload sin(ωswt+ θj )dt. (57)

Finally, note that the load current and voltage, iload and vload, are
governed by the following dynamics:

Lf
diload

dt
+ (Rf +NRTh) iload =

N∑

j=1

Vdcqj (t) −Nvload .

(58)

Cload
dvload

dt
+
vload

Rload
= iload . (59)

While (59) follows straightforwardly from the circuit laws for
an RC tank, (58) is derived by summing up all N instances
of (50). Going back to (56) and (57), we use integration by parts
for integrals involving iload and vload, where we substitute appro-
priately from (58) and (59) to compute the requisite derivatives.
Algebraic simplifications then yield (13).
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