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Abstract A systematic, automatable, unified methodology is presented for the model-
ing of non-linear large-signal dynamics and eigenvalue analysis of microgrid systems.
Unlike nodal-based simulators and typical state-variable methods that require Kirch-
hoff’s current law analysis, a state-space model is systematically derived from the
netlist of the equivalent qd microgrid circuit model. The model may be used to conduct
time-domain simulations and analyze system response to large transients. Additionally,
system eigenvalues may be analyzed with respect to inverter control gains and system
parameters to assess small-signal stability and sensitivity. The dynamic model is
verified against existing experimental results, and small-signal stability results are
presented.
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1. Introduction

A unified formulation for analyzing the large-signal transient response and small-signal
stability of microgrid power systems is presented. A microgrid, defined as a controllable
electrical network containing distributed energy sources and storage devices, connected to
the main grid through a bypass switch, is capable of islanding from the grid utility to pro-
vide uninterruptible power to local loads [1]. Microgrids are often employed in mission-
critical applications, such as medical, military, and telecommunication installations. A
variety of distributed resources and storage devices, such as photovoltaics, wind, fuel
cells, gas turbines, flywheels, and batteries, can be integrated into the system [2]. An
overview of various existing microgrid installations and their respective characteristics
can be found in [3, 4].

Several types of microgrids have been analyzed: rectifier-based DC microgrids [5, 6],
mixed systems of AC machines and inverters in AC microgrids [7–9], and inverter-based
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94 B. Johnson et al.

AC microgrids [10–15]. Significant effort has been conducted in droop-based control
design [16–23] and small-signal stability analysis [24, 25] of inverter-based microgrids.
For system analysis, a dynamic model must first be established. It is preferable that the
model formulation be general, systematic, and able to be automated.

Two distinct approaches have been employed to formulate microgrid dynamic mod-
els. For the first approach, a numerical integration method is used to express the network
state equations as a set of algebraic difference equations. Consequently, the network can
be represented as a linear system of resistors and current sources at each time step.
This approach, as outlined in [26–30], can be used to study the time-domain transient
response of a microgrid under disturbances, such as islanding, load changes, and faults.
Examples of available transient simulators include electromagnetic transients program
(EMTP), alternative transient program (ATP), power systems computer-aided design
(PSCAD), and, most recently, real-time digital simulator (RTDS) technologies.

Alternatively, a state-variable-based approach can be implemented once differential
equations are attained. The analytical state-variable formulation allows the use of many
control design and small-signal analysis techniques (e.g., eigenvalue analysis, feedback
linearization) [26, 30, 31]. A detailed treatment of model formulation and small-signal
stability analysis of power systems was outlined in [32, 33]. Despite the opportunity for
system analysis, the formulation of differential equations for dynamic systems can be
tedious. Although a microgrid is relatively small in size in comparison to large-scale
power systems, the number of equations associated with the controllers and network
can make an explicit formulation time consuming. The existing methods for establishing
network state equations generally require the analyst to evaluate Kirchhoff’s current law
(KCL) at each network node [8, 9, 25]. And circuit components, such as transformers
and mutual coupling [25], are often discarded to simplify model formulation. An efficient
method for establishing state equations without KCL analysis is preferred.

An automated methodology for dynamic characterization of inverter-based micro-
grids that allows for analysis of both time-domain transient behavior and small-signal
stability is utilized in this article. The modeling technique will be used to analyze
the behavior of the Consortium for Electric Reliability Technology Solutions (CERTS)
microgrid. Previous work in modeling the CERTS microgrid has predominantly focused
on EMTP-based transient models [34–36]. Because little work has been devoted toward
developing a CERTS microgrid model for eigenvalue analysis, one main contribution
of this article will be a model capable of small-signal stability analysis of the CERTS
system. The proposed formulation is general and can be applied to a variety of inverter-
based microgrids. Commonly used microgrid components, such as voltage sources, loads,
transmission lines, and transformers, are represented in the quadrature and direct (qd )
axes. Using the given network topology and parameters with the equivalent qd circuit,
the automated state model generation (ASMG) algorithm is employed to derive a state-
space model. The fundamental principles of the ASMG method are outlined in [37, 38].
Non-linear dynamics can be included since the proposed dynamic model formulation
does not require linearization. After the closed-loop equations are formulated, eigenvalue
analysis can be used to assess the relationship between control and circuit parameters
with system stability. The ASMG method, which has mainly been applied to motor
drives [37, 39], is extended to microgrid applications in order to study both dynamics
and stability.

This article is structured as follows: Section 2 gives a brief overview of the CERTS
microgrid characteristics and control. A general approach for producing the equivalent qd
network and its associated state-space model is shown in Section 3. Section 4 establishes
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Dynamic Characterization for Microgrid Systems 95

closed-loop system equations. Section 5 gives case studies of the CERTS system, and
Section 6 is the conclusion.

2. Microgrid Characteristics and Control

The proposed technique will be used to analyze the CERTS microgrid and its associated
control. AC energy sources are rectified, and DC energy sources interface with a DC-DC
converter before being connected to a DC bus. Then, local DC buses are interfaced to
the microgrid AC bus using parallel inverters. For the purpose of modeling inverter AC
output and system level dynamics, the DC bus voltage magnitude is assumed to be fixed
because it varies slowly. The inverter may be modeled as a controllable AC voltage source
with output einv.abc/, as the inverter switching frequency of 4 kHz is much greater than
the AC line frequency [7, 23–25, 30, 40]. The output voltage einv.abc/ has magnitude Einv

and phase !inv with respect to the microgrid system AC bus. The inverter is interfaced to
the bus through an LCL filter and a three-phase transformer, as shown in Figure 1.

Assuming that the effective reactance of the LCL filter X is purely inductive, the
real and reactive power exported from the inverter during steady-state conditions can be
expressed as [1, 10, 36] as

P D
EinvV

X
sin !inv; (1)

Q D
EinvV

X
cos !inv !

V 2

X
: (2)

As the inverter phase angle is typically small, P is proportional to !inv, and Q is
proportional to Einv. Thus, the inverter can be used to control the real and reactive
power injected into the microgrid bus. A droop controller is implemented such that
the inverter mimics the inertia of a synchronous machine. This ensures autonomous
inverter operation and minimizes system-level communication [17, 18, 41]. Using the
relationships established in Eqs. (1) and (2), the inverter frequency and voltage magnitude
are controlled to satisfy

! D !s ! mP .P ! P !/; (3)

and

Einv D V ! ! mQQ: (4)

Figure 1. Inverter configuration and closed-loop control.
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96 B. Johnson et al.

Generally, Eqs. (3) and (4) are referred to as the P -! and Q-V droop equations,
respectively. In Eqs. (3) and (4), V ! and P ! are the bus voltage magnitude and power
commands, respectively. The synchronous frequency is denoted as !s . During grid-
connected operation, each inverter will behave as a current source and regulate the power
injected into the microgrid such that P D P !. While islanded, the inverters support
the microgrid voltage and adjust their respective power outputs to share the microgrid
load. Under islanded conditions, the microgrid will approach a steady-state frequency !,
where possibly ! ¤ !s [17, 18, 23].

The CERTS microgrid uses a droop controller, which adheres to the above principles
except that the Q-V droop utilizes a proportional-integral (PI) controller [40]. The voltage
control law can be expressed as

Einv D Kp.Vset ! V / C Ki

Z

Vset ! Vdt; (5)

where Vset D V ! ! mQQ. The AC bus voltage and current measurements, as shown in
Figure 1, are denoted as vabc and iabc, respectively. The controller output commands Einv

and !inv are used to generate the pulse-width modulation (PWM) gate signals such that
the inverter voltage output satisfies

einv.abc/ D Einv

2

6

6

6

6

6

6

4

cos.!inv/

cos

!

!inv !
2"

3

"

cos

!

!inv C
2"

3

"

3

7

7

7

7

7

7

5

: (6)

The inverter controller differential equations are summarized in Eqs. (7)–(11):

d

dt
P D

QP ! P

#P
; (7)

d

dt
Q D

QQ ! Q

#Q
; (8)

d

dt
V D

QV ! V

#V
; (9)

d

dt
!inv D !s ! mP .P ! P !/; (10)

d

dt
z D Ki .V

! ! mQQ ! V /; (11)

QP D
3

2
.vd id C vqiq/; (12)
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Dynamic Characterization for Microgrid Systems 97

QQ D
3

2
.vd iq ! vq id /; (13)

QV D
q

v2
d C v2

q; (14)

where vqd D Œvq vd $T and iqd D Œiq id $T are the transformed measurements vabc and iabc.
The states P , Q, and V are the filtered power, reactive power, and voltage calculations,
respectively, and z is the integrator output in the Q-V droop PI controller. The output
voltage of every inverter, as expressed in Eq. (6), can be written in terms of its controller
states. The inverter voltage magnitude, as expressed in Eq. (5), can be rewritten as

Einv D z C Kp.V ! ! mQQ ! V /: (15)

Zero-axis quantities are neglected, as the system is assumed to be balanced. It should
be noted that the inverter control equations in Eqs. (7)–(11) are non-linear due to the
calculations in Eqs. (12)–(14). Furthermore, non-linearities are introduced by the power
limits of the inverter. Each inverter controller has a total of five state variables.

The microgrid typically contains multiple inverters; notation must be established for
system-level analysis. xinv is defined as a vector containing all inverter controller states.
Given a system with m inverters,

xinv D

2

6

6

4

xinv.1/

:::

xinv.m/

3

7

7

5

: (16)

In Eq. (16), each entry xinv.i/ is a vector comprised of states P , Q, V , !inv, and z of the
i th inverter. Similarly, the non-linear state equations of the multiple inverter controllers
can be written succinctly as

d

dt
xinv D

d

dt

2

6

6

4

xinv.1/

:::

xinv.m/

3

7

7

5

D finv.xinv; vbr; ibr/; (17)

where each entry d
dt xinv.i/ is a vector with the differential equations in Eqs. (7)–(11)

of the i th inverter controller. Since the state equations of each controller depend on
measurement signals, as shown in Figure 1, Eq. (17) is written as a function of the
microgrid network voltages and currents vbr and ibr , respectively.

3. Network Model

The equivalent qd circuit network equations are formulated, which yield constant values
in the steady-state, unlike the original abc circuit. This property will facilitate linearization
and small-signal stability analysis. Using the ASMG algorithm, a systematic method of
formulating the state-space model of the microgrid network will be established such that
the analyst is relieved of explicitly deriving the circuit differential equations.
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98 B. Johnson et al.

3.1. Park’s Transformation of Circuit Components

Park’s transformation, as defined in Eq. (18), is used to transform a set of three-phase
variables, fabc, to qd0 quantities, fqd0, as shown in Eq. (19):

Ks D
2

3

2

6

6

6

6

6

6

6

4

cos ! cos

!

! !
2"

3

"

cos

!

! C
2"

3

"

sin ! sin

!

! !
2"

3

"

sin

!

! C
2"

3

"

1

2

1

2

1

2

3

7

7

7

7

7

7

7

5

; (18)

fqd0 D Ks fabc; (19)

where ! represents the reference frame position and can be expressed as ! D
R

!ref dt C
!i , where !ref is the reference frame speed and !i is the initial position [40]. For the
remaining analysis, the synchronous reference frame is used such that ! D !st .

To complete the microgrid network model, only four types of balanced three-phase
circuit components are needed: voltage sources, capacitive elements, conductors with
series resistance and inductance, and magnetically coupled circuits. Using variations of
these fundamental circuit building blocks, it is possible to model transmission lines,
three-phase transformers, inverter voltage sources, filtering components, loads, and the
infinite bus. Each block will be transformed to an equivalent qd circuit representation.

3.1.1. Voltage Sources. The balanced abc voltage sources are transformed by apply-
ing Park’s transformation to the expression for vabc. Evaluating vqd0 D Ksvabc in the
synchronous reference frame and omitting the zero-axis gives

"

vq

vd

#

D Vpk

"

cos.!e ! !st/

! sin.!e ! !st/

#

; (20)

where Vpk is the line-neutral peak voltage amplitude, and !e is the voltage angle.
Equation (20) can be represented as an equivalent qd circuit [40]. This general result
can be used to model the inverter voltage outputs and the infinite bus voltage.

The infinite bus is assumed to operate at a fixed frequency !s with voltage amplitude
Vinf .pk/ . Rewriting Eq. (20) such that Vpk D Vinf .pk/ and !e D !st , the infinite bus voltage
einf .qd/ can be expressed as

"

einf .q/

einf .d/

#

D

"

Vinf .pk/

0

#

; (21)

Similarly, the balanced inverter voltages in Eq. (6) may be rewritten as

"

einv.q/

einv.d/

#

D Einv

"

cos.!inv ! !s t/

! sin.!inv ! !s t/

#

: (22)
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Dynamic Characterization for Microgrid Systems 99

3.1.2. Capacitive Branches. Evaluating KCL and applying Park’s transformation to a
balanced three-phase configuration of capacitors yields

iqd0 D C

!

d

dt
vqd0 C Ks

d

dt
K"1

s vqd0

"

: (23)

It can be shown that the factor Ks
d
dt

K"1
s reduces to

Ks
d

dt
K"1

s D !s

2

6

4

0 1 0

!1 0 0

0 0 0

3

7

5
: (24)

Substituting Eq. (24) into Eq. (23) and expanding yields

"

iq

id

#

D

2

6

6

4

C
d

dt
vq C !sCvd

C
d

dt
vd ! !sCvq

3

7

7

5

; (25)

which can be used to formulate the qd circuit in Figure 2 [40] used to model the inverter
filtering capacitors shown in Figure 1.

3.1.3. Resistive and Inductive Branches. Given a balanced configuration of RL trans-
mission lines, the analysis of Kirchhoff’s voltage law (KVL) and application of Eq. (19)
yields

vqd0 D r iqd0 C L

!

d

dt
iqd0 C Ks

d

dt
K"1

s iqd0

"

: (26)

Substituting Eq. (24) into Eq. (26) gives

"

vq

vd

#

D

2

6

6

4

riq C L
d

dt
iq C !sLid

rid C L
d

dt
id ! !sLiq

3

7

7

5

; (27)

Figure 2. Equivalent qd circuitry of three-phase capacitor configuration.
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100 B. Johnson et al.

Figure 3. Equivalent qd circuitry of three-phase RL circuit.

which can be represented using the RL circuit in Figure 3 [40]. In addition, purely
resistive and inductive circuits can be represented using Eq. (27) by setting L or r to
zero.

3.1.4. Magnetically Coupled Circuits. Each inverter and the infinite bus in the CERTS
microgrid are connected to a 480-V/208-V step-down transformer. The transformer is
modeled as three pairs of inductively coupled circuits connected in the grounded wye-
wye configuration. Figure 4 shows the abc transformer model. After evaluating KVL and
applying Park’s transformation, Eqs. (28) and (29) describe the primary and secondary
coils of the transformer, respectively. Expanding Eqs. (28) and (29) and omitting the
zero-axis, the transformer can be represented by the equivalent circuit in Figure 4;

vqd01 D r1iqd01 C L1

!

d

dt
iqd01 C Ks

d

dt
K"1

s iqd01

"

C M

!

d

dt
iqd02 C Ks

d

dt
K"1

s iqd02

"

;

(28)

vqd02 D r2iqd02 C L2

!

d

dt
iqd02 C Ks

d

dt
K"1

s iqd02

"

C M

!

d

dt
iqd01 C Ks

d

dt
K"1

s iqd01

"

:

(29)

Figure 4. Equivalent qd circuitry of three-phase transformer.
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Dynamic Characterization for Microgrid Systems 101

3.2. Automated State-space Model Formulation

Once the qd -axes network circuit has been established, the circuit state equations must
be formulated. The microgrid is represented as a collection of n nodes and b branches
using a directed graph. Each branch is a variation of the elementary model shown in
Figure 5. All of the microgrid circuit branches can be constructed by setting appropriate
parameters to zero. Using the additional capability that the voltage and current sources
ei and ji can be functions of time and other variables, all the equivalent qd branches,
and the voltage-source inverter model may be represented by this elementary branch.

The interconnected branches form the microgrid network whose structure is described
by the b "n node-incidence matrix Aa. Each column corresponding to a branch will have
exactly two non-zero entries, with one equal to C1 and the other to !1. The C1 entry at
the .i; j / entry of matrix Aa indicates the positive terminal connection of the j th branch
to the i th node. The !1 entry corresponds to the negative terminal connection. After row
operations, matrix Aa may be expressed [26, 37] as Eq. (30):

QAa D

"

I.n"1/#.n"1/
OA.n"1/#.b"nC1/

01#.n"1/ 01#.b"nC1/

#

: (30)

Defining Pi D 1=Ci , the parameters of each branch ri , Li , and Pi constitute b " b
matrices Rbr , Lbr , and Pbr , respectively. If a branch contains no capacitance, Pi D 0.
M is a b " b matrix whose entries mi;j D 1 if the j th capacitor is connected to the i th
branch and zero otherwise. The sources ei and ji form b-dimensional vectors ebr and
jbr , respectively. The off-diagonal elements in the inductance matrices represent mutual
coupling between branches and may be utilized to model transformers commonly used
in microgrid power systems. Defining vbr , ibr , and qbr as the vectors containing the
branch voltages, currents, and capacitor charges, respectively, the branch voltages may
be expressed [37] as

vbr D Rbribr C
d

dt
.Lbr ibr/ C Pbrqbr C ebr ; (31)

where

qbr D
d

dt
.ibr C jbr/: (32)

As demonstrated in [37], the voltage expression in Eq. (31) can be manipulated using
a series of algebraic steps to create a state-space model, as in Eqs. (33) and (34), of the

Figure 5. Elementary branch model.

D
ow

nl
oa

de
d 

by
 [N

at
io

na
l R

en
ew

ab
le

 E
ne

rg
y 

La
b]

 a
t 2

0:
22

 3
0 

A
pr

il 
20

16
 



102 B. Johnson et al.

microgrid network:

d

dt

"

qc

ix

#

D

2

6

4

0 MT BT
b

!L"1
x Px !L"1

x

!

rx C
d

dt
Lx

"

3

7

5

"

qc

ix

#

C

"

MT 0

0 !L"1
x Bb

# "

jbr

ebr

#

; (33)

"

ibr

vbr

#

D

2

6

4

0 BT
b

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Pbr M ! Lbr BT
b

L!1
x

Px

!

rbr C
d

dt
Lbr

"

B
T
b

! Lbr B
T
b

L
!1
x

!

rx C
d

dt
Lx

"

–
–

–
–

–
–

–

3

7

5

#

"

qc

ix

#

C

2

4

0 0

– – – – – – – – – – – –
0 I ! LbrBT

b L"1
x Bb–

–
–

–
–

3

5

"

jbr

ebr

#

: (34)

The matrices Bb , qc , rx , Lx, and Px are defined in Eqs. (35)–(39):

BT
b D

"

OA

I.b"nC1/#.b"nC1/

#

; (35)

qc D MT qbr ; (36)

rx D BbrbrBT
b ; (37)

Lx D BbLbrBT
b ; (38)

Px D BbPbrBT
b : (39)

As machine dynamics are not modeled, all circuit inductances will be constant such that
d
dt Lx D d

dt Lbr D 0 in Eq. (34). Consequently, the state matrices will be constant valued.
For compactness, Eqs. (33) and (34) may be written as

d

dt
xnet D Axnet C Bu (40)

and

y D Cxnet C Du; (41)

where xnet D Œqc ix$T is a vector of the state variables, u D Œjbr ebr $
T is a vector of the

current and voltage sources, and y D Œibr vbr$
T contains all branch currents and voltages.

The matrices A, B, C, and D can be defined by inspection of Eqs. (33) and (34).
The advantage of the presented formulation is that the network differential equations

can be defined systematically using the network circuit parameters and topology. Thus,
the analyst need not explicitly derive numerous state equations of a possibly complex
network. Additionally, by updating the node-incidence matrix Aa, the ASMG method can
be used to model systems with dynamic topologies. This capability allows for simulation
of microgrid islanding transients and other switching events.
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Dynamic Characterization for Microgrid Systems 103

4. Formulation of Closed-loop Equations

The closed-loop state equations must be expressed before the system can be linearized
for stability analysis. In this context, the inverter control equations of Section 2 form the
feedback loop, and the network state-space model of Section 3 represents the plant.
The closed-loop system state equations will be expressed in the form

d

dt
Qx D fsys.Qx/; (42)

where fsys.Qx/ is non-linear, and Qx contains both the inverter control and network state
variables xinv and xnet, respectively. Qx is defined as

Qx D

"

xnet

xinv

#

: (43)

For the closed-loop state equations to be expressed in the form shown in Eq. (42), a
series of algebraic substitutions will be made as outlined below.

$ The vector u containing the network voltage and current source outputs can be
written as a function of the states, u D fu.Qx/.

$ The network and inverter control differential equations can be expressed as d
dt

xnet D

fnet.Qx/ and d
dt

xinv D finv.Qx/.
$ Using the result of the previous step, the closed-loop state equations will be written

as d
dt

Qx D fsys.Qx/.

As shown in Figure 5, a network branch may contain a voltage source ei and current
source ji . The voltage and current sources form the vector u D Œjbr ebr $

T in the network
state-space model. Using KCL, all branch currents ibr may be written in terms of the
independent state currents ix:

ibr D BT
b ix: (44)

Thus, the current-dependent voltage sources in the inductive branches shown in Figure 3
are state dependent. Next, substituting Eq. (15) into Eq. (22), the inverter voltage source
outputs can be written in terms of inverter states xinv. Using these two results, all network
voltage sources in vector ebr are state dependent. For u D Œjbr ebr $

T to be written entirely
as a function of the states, it will next be shown that the current sources jbr are also state
dependent.

As illustrated in Figure 2, all capacitive branches contain capacitor-voltage-dependent
current sources. Branches containing inverter filter capacitors are modeled as having zero
resistance, zero inductance, and no voltage sources. Thus, it is possible to show that by
using Eq. (34), the capacitor voltages are equal to the rows corresponding to the capacitive
branch indices in the vector vcap D Pbr Mqc , where qc is a state-variable vector of the
capacitor charges. Therefore, all capacitor voltages can be expressed in terms of the state
variables in qc , and by extension, the capacitor-voltage dependent current sources also
depend on qc . Using the fact that ebr and jbr have been shown to be state dependent, u

can be written as the function

u D

"

ebr

jbr

#

D fu.Qx/: (45)
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104 B. Johnson et al.

Next, it will be shown how Eq. (45) will be used to formulate the network and control
differential equations as d

dt
xnet D fnet.Qx/ and d

dt
xinv D finv.Qx/. Substituting Eq. (45) into

Eq. (40) gives

d

dt
xnet D Axnet C Bfu.Qx/ D fnet.Qx/: (46)

As the network state equations have been written as a function of Qx, all that remains is
for the inverter control equations finv.xinv; vbr ; ibr/ to be written in terms of system states.
Since the inverter state equations depend on measurements, vbr and ibr must be written
in terms of the states. Using Eq. (45), all network voltages and currents can be written as

y D

"

ibr

vbr

#

D Cxnet C Dfu.Qx/ D fbr.Qx/: (47)

With this result, Eq. (17) becomes

d

dt
xinv D finv.xinv; vbr; ibr/ D finv.xinv; fbr.Qx// D finv.Qx/: (48)

Concatenating Eqs. (46) and (48), the system closed-loop equations are

d

dt
Qx D

d

dt

"

xnet

xinv

#

D

#

fnet.Qx/
finv.Qx/

$

D fsys.Qx/: (49)

The preceding formulation is general; thus it is applicable to a wide variety of
microgrid topologies regardless of the control method. Furthermore, as the steps required
to reach the closed-loop form are systematic, the formulation can be automated for
computer-aided modeling.

5. Case Studies

Simulation of system islanding and grid reconnection is conducted on the CERTS mi-
crogrid using the dual-inverter configuration shown in Figure 6. This microgrid system,
with parameters summarized in the Appendix, has been verified experimentally in [42].
Here, this physical system is used to verify the large-signal transient modeling technique.
Balanced operation is assumed, and all transformers are modeled with grounded wye-
wye connections. The loads, rated to consume a total of 18 kW, are purely resistive and
modeled as grounded wye connected. The utility grid system is modeled as an infinite
bus with an equivalent series impedance. The qd circuit model contains 34 branches and
15 nodes; b D 34 and n D 15. Considering that the model contains 2b ! n C 1 D 54
network state variables, the model is analytically intractable for practical purposes, and
thus, the proposed approach is attractive.

5.1. Large-signal Time-domain Studies

Before islanding, the system is utility connected, and both microsources regulate their
power output to 0.4 p.u. on a 15-kW base. At t D 0:25 sec in Figure 7, the system is
islanded and the two microsources increase their power output to accommodate the total
load. Simulation results, shown in Figure 7, closely match measured results from [42].
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Dynamic Characterization for Microgrid Systems 105

Figure 6. Dual-inverter configuration of CERTS microgrid.

Figure 7. Transient response of inverter 1 and inverter 2 due to system islanding. Power, voltage,

and currents are in per unit. (color figure available online)
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106 B. Johnson et al.

Figure 8. Transient response of inverter 1 and inverter 2 when system is reconnected to the grid

utility. Power, voltage, and currents are in per unit. (color figure available online)

These results verify the accuracy of the modeling technique and show that this particular
system is stable during islanding.

After the microgrid is islanded and steady-state conditions are reached, the system is
reconnected to the utility at t D 0:15 sec, as shown in Figure 8. The inverter controllers
then regulate both microsources to produce 0.4 p.u. on a 15-kW base. After system
transients subside, the pre-islanding and post-reconnection steady-state conditions are
identical.

5.2. Small-signal Stability

Linearization may be performed given the closed-loop equations in Eq. (49). Evaluating
the Jacobian of fsys.Qx/ at the equilibrium points gives the matrix ACL. The linearized
model is

d

dt
%Qx D ACL%Qx: (50)

The system small-signal stability is analyzed by calculating the eigenvalues of ACL. The
system is unstable when Re.&/ > 0, for any eigenvalue &. A root-locus plot of the eigen-
values of ACL is generated with respect to the gain settings to determine the relationship
between inverter gain settings and stability.

D
ow

nl
oa

de
d 

by
 [N

at
io

na
l R

en
ew

ab
le

 E
ne

rg
y 

La
b]

 a
t 2

0:
22

 3
0 

A
pr

il 
20

16
 



Dynamic Characterization for Microgrid Systems 107

Table 1

Gain setting at system instability

Parameter Threshold gain when Re.&/ > 0

mP 45:25mP.0/

mQ1 32:4mQ1.0/

mQ2 32:4mQ2.0/

The dual-inverter microgrid shown in Figure 6 is used to illustrate the relationship
between the system eigenvalues and controller gains. The former are analyzed under
varying control settings, while the system is grid connected and both inverter power
outputs are regulated to 6 kW. Specifically, the effect of droop gains mP and mQ on
stability is examined. As each of the control gains is increased, a Hopf bifurcation is
encountered, and the system becomes unstable. Table 1 summarizes the minimum gain
threshold that produced eigenvalues in the right half of the complex plane. The results
are expressed in terms of the typically used base gains mQ1.0/ D 0:0186, mQ2.0/ D
0:0215, and mP.0/ D 1:25" , where mQ1.0/ and mQ2.0/ are the voltage droop gains for
inverters 1 and 2, respectively. The frequency droop gain mP is identical for both inverters.

The root-locus plot corresponding to the control parameter mQ is shown in Figure 9.
For clarity, this plot contains the subset of eigenvalues corresponding to the imaginary axis
crossing. The power responses of inverter 1 shown in Figure 10 confirm an unstable and
growing output for the mQ gain setting corresponding to the right-hand plane eigenvalues

Figure 9. Root-locus plot with respect to the gain setting mQ. (color figure available online)

Figure 10. Dynamic response of inverter 1: (a) stable operation with voltage-droop gain setting

mQ D 32:2mQ1.0/ and (b) unstable operation with voltage droop gain setting mQ D 32:4mQ1.0/.

(color figure available online)
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108 B. Johnson et al.

Figure 11. Root-locus plot with respect to the gain setting mP . (color figure available online)

Figure 12. Dynamic response of inverter 1: (a) stable operation with frequency-droop gain setting
mP D 45mP.0/ and (b) unstable operation with frequency-droop gain setting mP D 45:25mP.0/.

(color figure available online)

as summarized in Table 1. When the gain is slightly smaller, the eigenvalues move
into the left-hand plane, and correspondingly, the response decays to a bounded output.
The dynamic response of inverter 2 is not included but also shows stable and unstable
operation corresponding to the eigenvalues in Figure 9.

Next, the root-locus plot with respect to gain mP is shown in Figure 11. As in
Figure 10, the plot contains only the subset of eigenvalues corresponding to the imaginary
axis crossing. The dynamic responses in Figure 12 confirm the findings summarized
in Figure 11. They show an exponentially growing output for the mP gain setting
corresponding to the right-hand plane eigenvalues, as summarized in Table 1. As in
the previous case, a smaller gain produces a stable system.

The agreement between the root-locus results and non-linear simulated responses
verifies the accuracy of the proposed methodology. Using the demonstrated analysis,
a thorough study of the relationship between system parameters and stability can be
conducted.

6. Conclusion and Future Work

A unified formulation for analyzing the non-linear large-signal transient response and
small-signal stability of microgrid power systems was utilized. The microgrid was trans-
formed to an equivalent qd circuit network such that the state variables are constant
in steady-state conditions. An automated state-space model formulation of the network
was derived using the node-incidence matrix and circuit parameters. The non-linear
inverter control equations and network state-space model were used to derive the system’s
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Dynamic Characterization for Microgrid Systems 109

closed-loop equations. The resulting non-linear dynamic model, which was verified
against existing experimental results for the CERTS microgrid, was utilized to simulate
the time-domain system response during an islanding and grid-reconnection transient.
After linearizing the closed-loop state equations, the eigenvalues were analyzed with
respect to inverter control gains. The proposed model can accommodate non-linear power
sources, allowing future work to develop a switching inverter model in which the hex-
bridge output voltages are represented as a space-vector in the qd0 domain. DC-bus and
storage dynamics could also be incorporated.
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Appendix. Microgrid parameters

r1 D 18:9 m' L1 D 49:4 (H
r2 D 4:2 m' L2 D 5:9 (H
r3 D 47:4 m' L3 D 66:5 (H
r4 D 15:8 m' L4 D 22:2 (H
rinv D 12:8 m' Linv D 5 mH
Rload A D 9:6 ' Rload B D 4:8 '
rTA.480 V/ D 10:2 m' LTA.480 V/ D 135:9 mH
rTA.208 V/ D 1:9 m' LTA.208 V/ D 25:5 mH
rTB.480 V/ D 17:1 m' LTB.480 V/ D 226:6 mH
rTB.208 V/ D 3:2 m' LTB.208 V/ D 42:4 mH
Cf D 3:2 (F
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