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Abstract—This article introduces the notion of minimum dis-
tortion point tracking (MDPT): a control strategy where switching
waveforms are optimally phase shifted to minimize aggregate ripple
power for networks of dc–dc converters that are connected in series
or parallel at the input or output. In a sense, MDPT generalizes
the ubiquitous concept of interleaving in balanced systems to a
broad class of asymmetric series- or parallel-connected dc–dc con-
verters. For networks of up to one hundred interconnected power
converters, MDPT demonstrates a one to two order of magnitude
reduction (−14 to −22 dB) in distortion power. We present and ex-
perimentally verify three algorithms that can dynamically solve the
MDPT optimization problem on a network of three input-parallel
connected dc–dc buck converters handling 1.8 kW. The experimen-
tal results illustrate an up to 3.06× reduction in the peak-to-peak
ripple of the parallel-side bus voltage and convergence close to an
optimal steady-state solution in 5 ms.

Index Terms—DC–DC power conversion, optimization methods,
power conversion harmonics.

I. INTRODUCTION

S ERIES- and parallel-connected dc–dc converters are ubiq-
uitous in many power electronics systems, such as point-

of-load conversion systems, dc microgrids, and integrated cir-
cuits with multiple on-die voltage domains [2]–[4]. In balanced
systems, symmetric phase shifting (i.e., interleaving) is widely
used due to numerous benefits that can be obtained through
control, including a scaling of the effective switching frequency
by the number of converters, a net ripple amplitude reduction,
and associated improvements in power quality and conducted
electromagnetic interference (EMI) [5]–[8]. However, in gen-
eral, asymmetries from independent source or load connections
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or from nonidealities in converter passive and active components
may arise in networks of dc–dc converters that are connected in
series or parallel at the input or output (e.g., in microgrids, point-
of-load conversion systems, and voltage regulation modules).
In such networks, it remains an open question whether phase
shifting can yield benefits similar to interleaving in symmetric
systems. Indeed, while interleaving is a particular operating
regime where switching waveforms for a system of N converters
are phase shifted 360◦/N apart, in asymmetric systems, the
optimal phase shifting may conceivably be entirely different.

This article introduces minimum distortion point tracking
(MDPT), which generalizes the notion of interleaving in bal-
anced systems to a broader class of asymmetric networks of
dc–dc converters that are connected in parallel or series at
the input or output. We present the concept of the minimum
distortion point (MDP), which establishes a first principles limit
on the ac ripple power (or equivalently, the distortion) that is
attainable with phase shifting for a network of interconnected
dc–dc converters. The MDP is defined as the phase shift for
switching waveforms across the converters that minimizes the
aggregate distortion in an �p-norm sense. Minimization of this
ac power is desirable in that it is precisely this quantity that
determines the minimum filtering needed to satisfy a maximum
ripple constraint. Using this definition, we develop three prac-
tical algorithms for MDPT. In particular, these algorithms are
real-time optimization methods that nudge the system toward
the MDP. Each MDPT algorithm is experimentally verified on
a network of three input-parallel connected dc–dc buck con-
verters handling a total power of 1.8 kW. The results illustrate
peak-to-peak ripple reductions up to 3.06× and convergence
close to an optimal steady-state solution in 5 ms. Moreover,
numerical analysis on networks of up to 100 interconnected
buck converters indicate that MDPT can enable a one to two
orders of magnitude reduction (−14 to −22 dB) in distortion
power relative to distortion power obtained with uncoordinated
converter operation.

A variety of methods have been proposed in the literature
to minimize the ripple or harmonic components in individual
and interconnected power converters. Perhaps most well-known
is harmonic elimination or reduction pulsewidth modulation
(PWM) schemes [9]–[12]. Unlike MDPT, these techniques ap-
ply to a single power converter and focus on static, open-loop
PWM that eliminates specific harmonics in the output waveform.
“Asymmetric” interleaving techniques for multiphase dc–dc
converters have been explored in a number of works. In [13], the
authors propose and analyze scenarios in which N converters are
identically phase separated θ◦, where θ �= 360◦/N . In [14], the
authors present a strategy to arbitrarily phase shift multiphase
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dc–dc converters to minimize the sum of the first harmonic of
the aggregate ripple component. MDPT fundamentally differs
from both of these techniques since it considers arbitrary phase
shifts across multiple power converters and optimally minimizes
a norm of the total harmonics of the ripple component. More-
over, while the techniques in [13] and [14] utilize precomputed
phase shifting parameters or look-up-tables, MDPT dynamically
generates and optimizes the phase spacing as a function of the
network, the operating point, and the input conditions. In other
work, optimal programmed PWM schemes have been proposed
that spread the spectral energy from switching circuit waveforms
across a higher number of harmonic frequencies (thus reduc-
ing the peak spectral components) [15]. In a similar direction,
randomized PWM schemes have been proposed to minimize
peak spectral components by utilizing a random frequency or
phase modulation [16], [17]. However, both techniques do not
reduce the total undesired harmonic energy, but rather spread it
away from concentrated discrete frequencies. In addition, only
individual power converters are considered, and networks of
interconnected power converters are not addressed.

Compared to existing literature, MDPT is novel in four dis-
tinct ways.

1. It is designed for multiple dc–dc power converters with
arbitrary topologies connected in parallel or series at the
input or output; in particular, it considers: a) different
converter topologies, b) different interconnection architec-
tures, including converters connected in series or parallel
and radial, loop, or network systems, and c) network
models capturing parasitics and line impedances.

2. It establishes a first principles limit on the minimum ac
ripple power that is attainable with phase shifting.

3. It considers phase shifts across multiple power converters
that are not necessarily equal.

4. It dynamically generates and optimizes the phase spacing
scheme in a closed-loop fashion as a function of the
network, the operating point, and the input conditions.

The remainder of this article is organized as follows. Section II
presents the mathematical principles of the MDP. Section III
presents a conceptual overview of MDPT methods and the un-
constrained optimization problem that seeks the phase shifting
across a generalized network of power converters that will bring
the system to the MDP. Algorithms for implementing MDPT
based on the gradient method, the nonlinear Gauss–Seidel
(NL–GS) method, and a metaheuristic optimization scheme are
presented in Sections IV, V, and VI, respectively. Experimental
results on a network of three input-parallel connected dc–dc
buck converters validate the performance of each algorithm.
Section VII presents analysis and comparisons of the charac-
teristics of each algorithm with respect to computational com-
plexity, convergence speed, decentralization of control, and the
optimality of the steady-state solution. Section VIII concludes
the article.

II. DEFINING THE MINIMUM DISTORTION POINT (MDP)

In this section, we define the MDP in a precise mathemat-
ical sense. We do so in the context of a system of N dc–dc

Fig. 1. System of N input-parallel connected dc–dc buck converters with
independent output voltages v1, . . . , vN and loads modeled as resistances
Rload,1, . . . , Rload,N .

buck converters operating in continuous conduction mode at
periodic steady state with identical switching frequencies, fs,
and connected in parallel at the input (see Fig. 1). As discussed
previously, this setup is merely to fix ideas and is without loss
of generality. Indeed, the MDP can be defined for any network
of dc–dc converters that are connected in series or parallel at the
input or output.

Following this mathematical definition, we will present nu-
merical simulations that demonstrate the achievable reductions
in aggregate distortion that are possible when operating at the
MDP for a candidate system with three interconnected convert-
ers. Then, we will present a Monte Carlo numerical simulation
that illustrates how the achievable reductions in aggregate distor-
tion scale with the number of interconnected power converters.

A. Definition and Interpretation of Distortion

We define distortion, D, as any �p-norm of the ac harmonics
of a particular signal of interest. While the generality of this
definition can be useful for different applications, it is perhaps
most intuitive to first consider the specific scenario when D is
defined as the squared �2-norm of the ac harmonics of vbus in
Fig. 1. With the selection of this norm, D is equivalent to the total
harmonic distortion (or similarly the squared root mean square
voltage) of vbus. In this way, D can be interpreted as a metric that
quantifies the ac (ripple) power associated with this voltage. The
minimization of this quantity is desirable in that it is proportional
to the ac power handled by the capacitor(s) Cbus (which models
the aggregate paralleled input capacitance of many dc–dc buck
converters), and thus, dictates the volumetric size of the compo-
nents as well as the losses associated with handling the ac power.
While the squared �2-norm is explored in depth for this article,
in other applications, the minimization of other �p-norms may
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be more relevant. For instance, in integrated circuit applications,
operating below the maximum voltage ratings of devices at all
times is a key consideration, and thus, the minimization of the
�∞-norm could be more pertinent.

B. Definition and Interpretation of the MDP

The MDP refers to the operating point of a collection of
interconnected switching power converters where the distortion,
D, is minimized. In the derivation that follows, we will develop
an analytic closed-form unconstrained optimization problem
that explicitly defines the MDP.

For a system of N dc–dc converters, collect the relative phase
spacing between converters in the length N − 1 vector θ :=
[θ21, θ32, . . . , θN(N−1)]

T, with θjk denoting the phase spacing
between the switching waveforms of the jth and kth converters,
respectively. Furthermore, denote �vbus as the ac voltage across
Cbus, and D to be the corresponding distortion. The MDP is char-
acterized by the θ that minimizes an unconstrained optimization
problem whose cost function is the quantity D. Precisely, the
MDP corresponds to the following phase spacing:

θ� = arg min
θ

D. (1)

The explicit parametric dependence of D on θ can be obtained
by calculating the squared �2-norm of the Fourier coefficients of
�vbus. From Parseval’s theorem, it is also possible to determine D
from a function norm of the time domain bus voltage waveform;
that is, the squared L2-norm of �vbus(t) [18]. However, this would
not allow us to, in general, uncover the parametric dependence
on θ in an analytical fashion. For the particular example of the
input-parallel connected buck converters illustrated in Fig. 1, the
Fourier coefficients can be obtained by computing the Fourier
series of each input current, i�, ∀� = 1, . . . , N , taking the sum of
these series to obtain the corresponding series for ibus and then
scaling by the capacitive impedance 1/(jωCbus). Following this,
it emerges that the closed-form analytical expression for D is

D =
K�

k=1

N�

n=1

(βk
n)2 + 4

K�

k=1

N�

j=1

j−1�

i=1

βk
i βk

j cos (θij) (2)

where βk
� is a scaled version of the kth Fourier-series coefficient

of i�, αk
� . The precise definitions of αk

� and βk
� as well as

the complete derivation of the above expression are given in
Appendix A.

With these mathematical preliminaries and definitions in
place, we next provide two motivating numerical examples
where we quantify the achievable improvement in power quality
when operating at the MDP. Here, and in the experimental results
that follow in Section III, we will use the symmetric interleaved
state as a baseline for comparison. The symmetric interleaved
state is equivalent to operating at the MDP when the circuit is
balanced and symmetric, and thus, serves as a good baseline
even in the general case for asymmetric systems.

Example 1 (Numerical analysis of the MDP with a network
of three converters): Consider the N = 3 converter topology
in Fig. 1 with component parameters and operating conditions
provided in Table I. The system is intentionally operated to

Fig. 2. Achievable reduction in D (in dB) when operating at the MDP
compared to operating at the symmetric interleaved state. Plot shows reduction
in D when v1 = 24 V, and v2 and v3 are independently swept from 12 to 36 V
with identical fixed resistive loads on the output of each converter. The darker
areas indicate regions where greater reductions in D are possible.

induce asymmetry with different output voltages, v1, v2, and v3,
since the resistive loads (2.4 Ω) and component parameters in
each phase are otherwise identical. We perform two different
sets of numerical simulations. First, we fix v1 = 24 V, sweep
both v2 and v3 independently from 12 to 36 V, and record the
difference in D between the symmetric interleaved state and the
MDP. The results of this sweep are shown in Fig. 2. (Since D
is essentially a metric of signal power, it is natural to express
reductions or changes in D on a decibel scale.) We observe that
at certain operating points, the reduction in D exceeds −16 dB.
This reduction is promising in that it can facilitate improvements
in power quality and the minimization of components needed
for filtering or EMI compliance. Moreover, D is lower at the
MDP across every operating point in this sweep. Also, note
that at the point of symmetry, v1 = v2 = v3 = 24 V, symmetric
interleaving is equivalent to operating at the MDP. Next, we
perform a sweep in which v1 is held constant at 24 V while v2

and v3 are swept, such that v3 = (48 − v2) V. The results of this
sweep are shown in Fig. 3, where D is normalized to the value
obtained when v1 = v2 = v3 = 24 V (recall that the symmetric
interleaved state and the MDP are identical at this point). Across
this range, the worst case D at the MDP is −11.28 dB lower than
the value at the symmetric interleaved state, which corresponds
to a 3.6× reduction in the output voltage ripple in vbus.

Example 2 (Numerical analysis of the MDP for a network
of N converters): In this example, we will analyze performance
enhancements for arbitrarily large collections of converters with
a Monte Carlo simulation. For each network of N converters
(Fig. 1), one hundred scenarios with the following randomized
inputs are considered: a) the output voltage v�, b) the average
output current, and c) the inductor size L� of each of the N
converters. The �th converter has an input current waveform
that is pictorially represented in Fig. 13. We assume operation
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Fig. 3. Reduction in D between the symmetric interleaved state and the MDP
when v1 = 24 V and v3 = (48 − v2) V.

in periodic steady state and that the bus voltage vbus and the
output voltage of each converter v� are constant. Parameters are
normalized for convenience (i.e., T = 1 and I� = 1 p.u. nomi-
nally). For each scenario, the randomized inputs are generated
as follows.

1) The duty cycle D� is a uniformly distributed random num-
ber in the interval (0.2, 0.8). Given the assumptions made,
the selection of D� will determine the output voltage, v�.

2) The ripple magnitude ΔI� is a uniformly distributed ran-
dom number in the interval (0.5, 1.5). The selection of ΔI�

can be interpreted as the relative size of the inductance
L�; i.e., a larger ΔI� corresponds to a smaller L�, and vice
versa.

3) The dc output current I� is a uniformly distributed random
number in the interval (0.5, 1.5). The selection of I� is
interpreted as the average load on the output of the �th
converter.

For each scenario, D is calculated at: 1) the MDP, 2) a
uniformly distributed random phase spacing across the N con-
verters, and 3) the phase spacing across the N converters that
maximizes D, i.e., the worst-case D that is possible. The results
of the Monte Carlo simulation are shown in Fig. 4. The data is
normalized to the value of D at the MDP. The magenta dashed
line indicates D obtained at the worst-case phase shifting; D
obtained at the uniformly distributed random phase spacing
across the N converters is depicted with a box plot that presents
the median, the 25th percentile, and the 75th percentile of the
Monte Carlo simulation.

When compared with operation at the worst-case phase shift-
ing, operation at the MDP enables a −15.85 dB reduction in D
when N = 3 and an approximately two orders of magnitude (22
dB) reduction when N > 10. Since it is unlikely that an uncoor-
dinated network of power converters would ever be operated at
this worst-case phase shifting, it is appropriate to also consider a
comparison with D obtained at the uniformly distributed random

Fig. 4. Monte Carlo simulation that illustrates D obtained at various phase
shifting scenarios, including the MDP (dashed black line), the worst-case phase
shifting (dashed magenta line), and at a uniformly distributed random phase
spacing across theN converters (red box plot indicating median, 25th percentile,
and 75th percentile). For each N , one hundred Monte Carlo scenarios are
simulated, and the output voltages, the average output current, and the inductor
size of each of the N converters are randomized variables.

phase spacing, which represents a more realistic case. Note that
for this particular analysis, the symmetric interleaved state is not
considered since its interpretation and implementation become
impractical for larger networks of converters. Compared with
operation at a randomized phase spacing, when N = 3, the
achievable reduction in D is −14.39 dB from the median value,
which approximately corroborates the analysis from Example 1
(Fig. 2). Furthermore, this reduction in D remains relatively un-
changed as N → 100. This analysis suggests that both small and
large networks of interconnected power converters can signifi-
cantly benefit from operating at the MDP, potentially achieving
upwards of an order of magnitude reduction in distortion power.

III. MINIMUM DISTORTION POINT TRACKING (MDPT)

With the MDP formally introduced and characterized in
Section II, we now present the notion of MDPT. Conceptually,
we think of MDPT as control and optimization techniques
synthesized to drive a system toward the MDP; that is, to uncover
the optimal phase spacing given by (1). Since the unconstrained
optimization problem referenced in (1) is nonconvex and of the
nondeterministic polynomial time (NP) class, it does not admit
an analytical solution even for the elemental case with N = 2.
In this section, we put forth three optimization algorithms and
experimentally validate their performance for the task of MDPT
in dc–dc buck converters.

A. Overview of Algorithms for MDPT

The first algorithm we investigate for MDPT is based on the
gradient descent method (Section IV). We will see that this
method is conceptually simple and easy to implement, but relies
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Fig. 5. Hardware prototype consisting of three 600 W input-parallel connected
dc–dc buck converters with a 48 V dc input bus.

on universal and real-time knowledge of network parameters,
has moderate convergence speed, and can only guarantee con-
vergence to local minima (which may not necessarily correspond
to the MDP). Second, we present an MDPT algorithm based
on the NL–GS method (Section V). It will be shown that this
algorithm can be completely decentralized, that is, the controller
can be implemented locally for each dc–dc buck converter and
does not require global knowledge of parameters, or any form
of communication between converters. The tradeoff, however,
is that the algorithm is more computationally intensive than the
gradient method. Furthermore, only local convergence can be
guaranteed. Third, we will present an MDPT algorithm based
on a metaheuristic optimizer, in particular, the particle swarm
optimization (PSO) computational method (Section VI). We will
see that this method enables the closest convergence to the mini-
mum (the MDP), but relies on universal real-time knowledge of
the entire network and is the most computationally intensive of
all three algorithms. As alluded to, each of the three presented
algorithms has associated advantages and disadvantages, and
these are discussed in detail and compared in Section VII.
Additionally, we will discuss how local minima of the objective
function will affect the steady-state performance of algorithms
that can only track such minima.

B. Experimental Prototype

A hardware prototype consisting of three input-parallel con-
nected dc–dc buck converters is used to experimentally validate
the three MDPT algorithms introduced above (see Fig. 5). Each
converter is rated for 600 W resulting in an overall power
handling capability of 1.8 kW. Table I lists values of pertinent
parameters and components of the hardware prototype. Each
�th buck converter can locally sample the bus voltage vbus,
its output voltage v�, and its average output current. The bus
capacitance Cbus is chosen to yield a bus voltage ripple ratio of
approximately 6% under worst-case operating conditions. Note

TABLE I
PARAMETERS AND COMPONENTS FOR NUMERICAL SIMULATIONS AND

EXPERIMENTAL PROTOTYPE

that this ripple ratio can be smaller, but is made intentionally
large in these experiments to clearly illustrate the voltage ripple
waveform. For algorithms that require a controller for each buck
converter (Section V), three separate field-programmable gate
array (FPGA) controller boards are used. For algorithms that
require a centralized controller (Sections IV and VI), a single
FPGA controller board is used (as depicted in Fig. 5).

Algorithm 1: Gradient Method-Based MDPT Algorithm.
1: Input: vbus, v1 . . . vN , I1 . . . IN , D1 . . . DN , Cbus

2: Output: Steady-state minimum of (2).
3: repeat
4: Calculate D from (2)
5: Calculate gradient ∇D(θ[q])
6: Calculate gradient step θ[q + 1] from (3)
7: until stopping criterion is met

IV. MDPT ALGORITHM #1: GRADIENT DESCENT

A. Algorithm Principles and Design

The gradient-descent-based MDPT algorithm uses the gra-
dient of distortion, D, to determine a direction and magnitude
in which to iteratively perturb θ toward a local minima [19].
Precisely, the update rule for the q + 1 iterate of θ is given by

θ[q + 1] = θ[q] − κ∇D(θ[q]) (3)

where ∇D(θ[q]) is the gradient of D with respect to θ at the
qth update instant, and κ is a scalar that can be empirically
determined to trade off numerical stability and convergence
speed. Since D is not a convex function of θ, the gradient
descent-based MDPT can at most converge to a local minimum
depending on initial conditions. Analysis of these minima are
presented in Section VII-D.

Next, we perform a numerical simulation to verify the oper-
ation of the gradient descent-based MDPT. Again, consider the
topology in Fig. 1 for N = 3 and with the component parameters
and operating conditions as indicated in Table I. We consider a
static operating scenario in which v1 = 36 V, v2 = 24 V, and
v3 = 12 V. The converters are initialized to operate at the sym-
metric interleaved state (i.e., θ21 = 120◦ and θ31 = 240◦). We
use the gradient update function in (3) to perturb θ iteratively
from the symmetric interleaved initial condition. Figure 6 shows
the results of the numerical simulation, i.e., θ is perturbed
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Fig. 6. Numerical simulation of the gradient-descent-based MDPT algorithm.
Contour lines of D (normalized to D at the MDP) and arrows depicting ∇D are
shown.

orthogonally to the contour lines of D and the algorithm con-
verges to the MDP, in this case, at θ21 = 103◦ and θ31 = 123◦.
For the particular system, D is reduced by −11.6 dB (14.6×)
at the MDP compared to operation at the symmetric interleaved
state.

B. Experimental Verification

The gradient-based MDPT algorithm is implemented on the
experimental setup shown in Fig. 5. We introduced asymmetry in
the resistive loads of each converter (Rload,1 = 2.4 Ω, Rload,2 =
1.2 Ω, and Rload,3 = 1.2 Ω) and also in the output voltages of
each converter (v1 = 36 V, v2 = 24 V, and v3 = 12 V).

In the first test scenario, the system is initialized at the sym-
metric interleaved state, and the MDPT algorithm is initiated
at t = 0. We record the ac ripple component of vbus, denoted
�vbus, and also the time required for the system to reach steady
state. The algorithm operates at an update rate of 2.5 KHz, eight
times slower than the switching frequency of each converter.
This update rate can be chosen to balance convergence speed
and stability of the algorithm. The precise update rate will
depend on the application and the types of expected operating
transients, and can be tuned in order to optimize performance.
As shown in Fig. 7, when the algorithm is initialized t = 0, the
magnitude of �vbus begins decreasing, and after about 40 ms (100
gradient iterations), the system is at steady state. At this point,
the peak-to-peak ripple of �vbus is reduced 2.91× compared to
the peak-to-peak ripple at the symmetric interleaved state.

Second, we validated the tracking capability of the MDPT
algorithm in scenarios when the converter output loads (and
thus, the MDP) are changing with respect to time. In this
experiment, the output load of each converter is independently
varied by changing the commanded output voltage across a

Fig. 7. Experimental validation of the convergence speed and performance
of the gradient-based MDPT algorithm. As shown, the algorithm converges
in approximately 100 iterations (40 ms) and enables a 2.91× reduction in the
peak-to-peak ripple of �vbus compared to the symmetric interleaved state.

fixed resistive load (Rload,1 = Rload,2 = Rload,3 = 2.4 Ω). The
output voltages of the converters are initialized identically, such
that v1 = v2 = v3 = 24 V. Then, v2 is changed linearly from 24
to 36 V at a rate of 24 V/s, while v3 is changed linearly from 24
to 12 V at the same rate. The voltage v1 is held constant at 24 V.
Thus, the output power of two converters is dynamically varied
between 60 and 540 W, while the third converter has a constant
output power of 240 W.

As shown in Fig. 8(a), when symmetric interleaving is applied
to this scenario, the voltage ripple in vbus is minimized when the
output voltages and loads are identical, as expected. However,
when the asymmetries in the converter outputs are introduced,
the voltage ripple increases monotonically, and reaches a max-
imum when v2 = 36 V and v3 = 12 V. At this point, the
peak-to-peak ripple of �vbus is 3.28× larger than when the output
voltages are identical.

When the MDPT algorithm is applied to this scenario, as
shown in Fig. 8(b), the peak-to-peak ripple of �vbus stays rel-
atively constant, even as the asymmetries in the outputs are
introduced. At the point when v2 = 36 V and v3 = 12 V, the
peak-to-peak ripple of �vbus is only 1.48× larger than when the
output voltages are identical. This translates to a 2.20× reduction
in the peak-to-peak ripple.

V. MDPT ALGORITHM #2: DECENTRALIZED

NONLINEAR GAUSS–SEIDEL

A. Algorithm Principles and Design

A limitation of the gradient-based MDPT algorithm is the
need for information from all N converters, including output
voltages, duty cycles, and average output currents. In some
applications, it is desirable to have a local controller at each
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Fig. 8. Experimental validation of the tracking capability of the gradient-based MDPT algorithm for time-varying loads. As asymmetries in the output loads
are gradually introduced at t = 500 ms, (a) symmetric interleaving results in a 3.28× larger peak-to-peak ripple of �vbus at the worst case, while (b) the gradient-based
MDPT algorithm enables ripple minimization throughout the asymmetric loading transient and results in only 1.48× larger peak-to-peak ripple of �vbus at the
worst case.

Algorithm 2: Decentralized NL–GS-Based MDPT
Algorithm.
1: Output: Steady state minimum of (2).
2: for � = 1 to N do
3: Input: vbus, v�, I�, D�, Cbus

4: Output: Phase spacing θ�
� corresponding to the

minimizer of D
5: repeat
6: Assume constant θ vector except for θ� component
7: Calculate D from inputs
8: Computation of θ�

� that minimizes D
9: until stopping criterion is met

power converter that only samples and utilizes local infor-
mation. Such a decentralized operating paradigm has obvi-
ous benefits with regard to modularity, scalability, and fault
tolerance.

Here, we present an MDPT algorithm based on a decen-
tralized NL–GS technique. Conceptually, the NL–GS MDPT
algorithm minimizes (2) one “component” at a time, where a
component is the phase shift θ� of a single converter. For the
�th converter, we calculate the θ�

� that globally minimizes D
under the assumption that all other components of the vector θ
are constant. Because this is a one-dimensional optimization
problem, it is simple to compute, and the global minimum can
be obtained using a brute-force method. Note that this minimum
is different from the MDP since it constrains the other N − 1
components of θ. By successively calculating θ�

� for all N
converters and iterating the calculations, it can be proven that

this successive component-wise minimization will yield conver-
gence to a local minima of D [20]. These local minima will be
identical to the minima obtained by the gradient-based MDPT
algorithm.

The local minimization of each component only requires
information that can be sampled by the �th converter, namely
vbus, v�, I�, D�, and Cbus. In this way, the algorithm can be
implemented locally at each converter and requires no communi-
cation with any other controller. We assume that each converter
calculates and updates its θ�

� asynchronously, which enables us
to make the needed assumption that every phase shift other than
θ� is constant. The experimental results that follow validate the
practicality of this assumption.

Next, we perform a numerical Monte Carlo simulation to
verify the operation and convergence of the NL–GS MDPT
algorithm. The setup details of the Monte Carlo simulation are
identical to those shown previously in Example 2 and Sec-
tion VII-D. Fig. 9 illustrates the value of D obtained after q
iterations of the NL–GS MDPT algorithm for N = 3, 20, and
100. In each iteration q, the N converters each compute the
optimizer θ�

� once.
The results of the simulation demonstrate that the NL–GS

MDPT algorithm indeed asymptotically converges toward the
local minima identified in Section VII-D. Moreover, as our previ-
ous analysis indicated, the local minima of larger networks (e.g.,
N = 100) are closer to the MDP and can yield better steady-state
solutions. The convergence rate of the NL–GS MDPT algorithm
also has a dependence on the size of the network. Smaller
networks have longer convergence times to steady state, and
also have larger variance in the value of D. This can be seen with
the shaded regions in Fig. 9, which indicate the 25th and 75th
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Fig. 9. Monte Carlo simulation that illustrates the value of D, normalized to D at the MDP, obtained for q iterations of the NL–GS MDPT algorithm. As shown,
the NL–GS MDPT algorithm converges asymptotically towards local minima identified in Section VII-D, while increasing the number of interconnected converters
(N ) yields a steady-state solution closer to the MDP. (a) N = 3. (b) N = 20. (c) N = 100 .

percentile values of the Monte Carlo simulation. For networks
of most sizes, the analysis suggests that the NL–GS MDPT
algorithm will obtain an adequate solution in approximately fifty
iterations.

B. Experimental Verification

We implemented the NL–GS MDPT algorithm on the exper-
imental setup shown in Fig. 5. The setup is modified, such that
each dc–dc buck converter has a separate FPGA controller that
runs Algorithm 2. The same circuit and asymmetric operating
parameters from the first test in Section IV-B are used, that
is, Rload,1 = 2.4 Ω, Rload,2 = 1.2 Ω, and Rload,3 = 1.2 Ω and
v1 = 36 V, v2 = 24 V, and v3 = 12 V. Each converter calculates
and updates its corresponding θ� at a rate of 2.5 kHz. The
clocks of the controllers are not synchronized with each other,
and successive θ� updates are considered asynchronous due to
inherent clock drift.

Again, the system is initialized at the symmetric interleaved
state, and the NL–GS MDPT algorithm is initiated at t = 0.
We present the ac ripple component �vbus in Fig. 10. When
the algorithm is initialized at time t = 0, the peak-to-peak
ripple magnitude of �vbus begins decreasing. After about 30 ms
(75 component-wise iterations), the system is at steady state.
At this point, the peak-to-peak ripple of �vbus is reduced 2.82×
compared to the peak-to-peak ripple at the symmetric interleaved
state.

VI. MDPT ALGORITHM #3: METAHEURISTIC OPTIMIZER

A. Algorithm Principles and Design

Metaheuristic optimization techniques are generally empiri-
cal in nature and do not have theoretical guarantees of conver-
gence or optimality. However, in optimization problems with
large feasible solution spaces, metaheuristics can, in some cases,
find reasonably good solutions with less computational effort
than a brute force search. We explore the application of meta-
heuristics for the MDPT problem by implementing a meta-
heuristic technique, specifically, the particle swarm optimization
(PSO) method [21], [22].

Fig. 10. Experimental validation of the convergence speed and performance
of the decentralized NL–GS-based MDPT algorithm. As shown, the algorithm
converges in approximately 75 component-wise iterations (30 ms) and enables
a 2.82× reduction in the peak-to-peak ripple of �vbus compared to the peak-to-
peak ripple at the symmetric interleaved state.

Algorithm 3: Metaheuristic Optimizer (Particle Swarm
Optimizer) MDPT Algorithm.
1: Input: vbus, v1 . . . vN , I1 . . . IN , D1 . . . DN , Cbus

2: Output: Steady state minimum of (2).
3: Generate I particles of θ, θi, that are initialized at

uniformly distributed random points within the
domain θ� ∈ [0, 2π)

4: Associate velocity V i, personal best pi, velocity
update rule μi(θi, V i), and position update rule
ξi(θi, V i) vectors with every ith particle

5: repeat
6: for i = 1 to I do
7: Calculate D(θi) from (2)
8: if D < min(pi) then
9: Update pi with D
10: Update θi from ξi(θi, V i)
11: Update V i from μi(θi, V i)
12: until stopping criterion is met
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Fig. 11. Experimental validation of the convergence speed and performance
of the metaheuristic optimizer-based MDPT algorithm. As shown, the algorithm
converges in approximately 12 iterations (5 ms) and enables a 3.06× reduction
in the peak-to-peak ripple of �vbus compared to the peak-to-peak ripple at the
symmetric interleaved state.

A sketch of the PSO MDPT algorithm is presented in
Algorithm 3. As shown, the algorithm generates I “particles,”
or instances, of θ, denoted as θi, that are initialized with a
uniform random distribution. The distortion D is calculated
at each of the I particles from (2). Similar to the gradient-
based MDPT algorithm, this requires information from all N
converters, including output voltages, duty cycles, and average
output currents. Thus, unlike the NL–GS MDPT algorithm, it
is not a decentralized technique. Once D is calculated, each
particle stores the lowest D it has computed thus far in a
“personal best” vector pi. New values for θi are then calculated
based on “velocity” and “position” update rules, μi(θi, V i)
and ξi(θi, V i), respectively. The PSO MDPT can be compu-
tationally intensive since the number of evaluations of D scale
linearly with the number of particles I. However, increasing the
number of particles is generally desirable since it increases the
probability of obtaining a minimum at or close to the global min-
imum of the objective function and avoiding suboptimal local
minima.

B. Experimental Verification

We implemented the PSO MDPT algorithm on the experi-
mental setup shown in Fig. 5 with a single FPGA controller. The
same circuit and asymmetric operating parameters from the first
test in Section IV-B and V-B are used, that is, Rload,1 = 2.4 Ω,
Rload,2 = 1.2 Ω, and Rload,3 = 1.2 Ω and v1 = 36 V, v2 = 24 V,
and v3 = 12 V. The PSO algorithm is implemented with I =
128, and updates the optimal phase spacing θ� at a rate of
2.5 kHz. As shown in Fig. 11, the system is initialized at the
symmetric interleaved state, and the PSO MDPT algorithm is
initiated at t = 0. Within 5 ms (12 PSO iterations), a steady-state
value is reached where the peak-to-peak ripple of �vbus is reduced
3.06× compared to the peak-to-peak ripple at the symmetric
interleaved state.

VII. MDPT ALGORITHM ANALYSIS AND TRADEOFFS

With three candidate algorithms for MDPT presented in Sec-
tions IV, V, and VI, we will now analyze the advantages and
disadvantages of each, as well as discuss candidate application
areas where a particular algorithm would be better suited than
the others. The algorithms are compared based on four perfor-
mance metrics: 1) computational complexity, 2) convergence
speed, 3) decentralization of control, and 4) achievable degree
of distortion minimization at steady state. Table II presents a
summary of these comparison metrics.

A. Computational Complexity

To quantify the computational complexity of each of the
algorithms, we refer to the slice lookup table (LUT) instances
and slice register instances used by the algorithm on the Xilinx
Artix-7 XC7A35T FPGA. The XC7A35T contains 20800 slice
LUTs and 41600 slice registers. Of the three algorithms, the
gradient-based MDPT algorithm has the lowest complexity,
utilizing only 2.32% of the slice LUTs and 0.33% of the slice reg-
isters. The low computational complexity and ease of implemen-
tation make the gradient-based MDPT algorithm well-suited
for applications that demand low-cost and are not physically
distributed (e.g., board-level point-of-load converters). The NL–
GS MDPT algorithm has slightly higher complexity; however,
a key difference is that the NL–GS MDPT algorithm requires
an FPGA for each of the N power converters. The PSO-based
MDPT algorithm is by far the most computationally complex of
the three algorithms, requiring 81.3% of the slice LUTs and
11.5% of the slice registers. While the PSO algorithm itself
is simple to implement in principle and also practically on an
FPGA, the large number of computations make the algorithm
resource intensive. In particular, the number of evaluations of D
scale linearly with the number of particles I to evaluate. Thus, a
tradeoff between resource utilization and algorithm performance
is necessary, since more particles will improve the optimality of
the algorithm. Here, we conclude that for resource-constrained
computational systems, the gradient-based and NL–GS MDPT
algorithms are most attractive, while the PSO MDPT algorithm
is better suited to high performance computational systems and
networks with lower N .

B. Convergence Speed

Next, we will compare the convergence speed of each al-
gorithm to steady state. We reference the experimental results
obtained in Sections IV-B, V-B, and VI-B that verified the con-
vergence of each algorithm when initialized from the symmetric
interleaved state. The gradient-based MDPT algorithm has the
slowest convergence rate, requiring 100 algorithm iterations
to converge. As discussed, the scalar value κ in (3) dictates
the numerical stability and convergence speed. Here, κ was
selected to maximize the convergence speed while ensuring
numerical stability over a wide operating range. Note that similar
Newton-derived techniques, such as the secant method, may
provide improvements in convergence speed and stability for
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TABLE II
A QUANTITATIVE COMPARISON OF THE THREE MDPT ALGORITHMS PRESENTED IN THIS ARTICLE

1Lower is better.
2For algorithm block only on Xilinx Artix-7 XC7A35 T.
3From experimental results in Sections IV-B, V-B, and VI-B.
4From median value of analysis in Section VII-D for N = 3; 1.0 is optimal.

gradient-type algorithms. The NL–GS MDPT algorithm pro-
vides moderate improvements in convergence speed compared
to the gradient-based MDPT algorithm, but is similarly limited
in performance since each calculation only perturbs a single
component (i.e., one dimension of θ) at a time. The PSO MDPT
algorithm has the fastest convergence speed, requiring only
12 algorithm iterations to achieve steady state. This can be
attributed to the nature of the metaheuristic optimization, which
does not perturb θ smoothly, but can instantaneously shift θ to
a better performing point in the feasible search space.

C. Decentralization of Control

Both the gradient-based and PSO MDPT algorithms are cen-
tralized; that is, they required information from all N converters,
including output voltages, duty cycles, and average output cur-
rents. While this may be practical in some applications, such
as in point-of-load converters and on-die power conversion,
it is unrealistic in others, such as in microgrids and building
power distribution networks. The spatially distributed nature of
these latter applications make it challenging to communicate
information in real-time to a centralized controller. Moreover,
this centralized controller introduces a single point of failure in
the system. To overcome these limitations, the NL–GS MDPT
algorithm offers a decentralized approach that only requires
information that is local to each power converter. Thus, for
applications that are inherently spatially separated or that require
high degrees of scalability, modularity, or fault tolerance, the
NL–GS MDPT algorithm offers compelling benefits.

D. Achievable Degree of Distortion Minimization

Finally, we analyze and compare the minima obtained by each
algorithm. Since problem (2) is nonconvex, the gradient-based
and NL–GS MDPT algorithm will track local minima of D(θ)
depending on the initial condition of θ. For instance, in Fig. 6, a
second minima can be seen around θ21 = 275◦ and θ31 = 325◦,
and if θ were initialized closer to this region, then convergence
to this suboptimal minima would be likely. Thus, it is important
to study if these local minima are sufficiently “good” as to

justify the use of optimization algorithms that can only track
such minima.

Toward this end, we performed another Monte Carlo sim-
ulation for analyzing the distortion D obtained at these local
minima in relation to D obtained at the MDP. The setup details
of the Monte Carlo simulation are identical to those in Exam-
ple 2. A local minimum is identified through the selection of
a uniformly distributed random initial condition. We run one
hundred scenarios with the randomized inputs for each network
of N interconnected power converters (Fig. 1). The results are
shown in Fig. 12, where the magenta dashed line is D at the
worst-case phase shifting, the data in red is D at the uniformly
distributed random phase spacing across the N converters, and
the data in blue is D at the randomly selected local minima. The
values of D have been normalized to the value of D at the MDP
and plotted on a logarithmic scale. Again, the shaded regions
around each data point indicate the 25th and 75th percentiles of
the Monte Carlo simulation, while the dark line represents the
median value. The right subfigure illustrates a zoomed version
of D obtained at the local minima on a linear scale in relation to
D at the MDP.

The results indicate that for networks composed of N < 20
interconnected power converters, the distortion D obtained at
local minima are generally in the range of 1 to 2.5× the distortion
obtained at the MDP. This can still be considered a significant
reduction, particularly in relation to D obtained at the worst-case
phase shifting, which, for this range of network size, results
in 5 to 10× higher D than the local minima. Interestingly,
for larger networks (N > 20), we see that D obtained at local
minima begin to converge to the value of D obtained at the MDP.
Indeed, at N = 100, the minima are essentially identical. This
can be attributed, in part, to the observation that the degrees
of freedom in the optimization problem scale linearly with the
number of converters in the network. Thus, as N increases,
there can be more local minima that are closer to the MDP.
The analysis suggests that optimization methods that track local
minima can be adequate for the MDPT problem, and can be
particularly effective at obtaining close-to-optimal performance
when applied to larger networks.
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Fig. 12. Monte Carlo simulation that illustrates D obtained at the worst-case phase shifting (dashed magenta line), at a uniformly distributed random phase
spacing across the N converters (red), and at various local minima of the non-convex function D(�) (blue), all normalized to D at the MDP, and plotted as a
function of the number of interconnected power converters N . For each N , one hundred scenarios are simulated, and the 25th and 75th percentile values of D are
shown with shaded bars.

Conversely, the PSO-based MDPT algorithm has a key advan-
tage in that, due to the stochastic nature of particle position and
velocity, it is significantly less likely to become trapped in local
minima. Moreover, increasing the number of particles enables
faster identification of solutions that are practically identical to
the MDP. However, since the PSO-based MDPT algorithm (or
most metaheuristic optimization techniques in general) does not
have theoretical guarantees of stability or convergence to the
MDP, numerical simulations should be used to verify perfor-
mance and convergence under expected operating conditions.
The high-performance yet high computational complexity of
the PSO-based MDPT algorithm makes it well-suited for ap-
plications that are not resource-constrained, for instance, on-die
voltage regulation modules.

VIII. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

This article introduced the notion of MDPT as a means to
minimize distortion in networks of series- or parallel-connected
dc–dc converters. Our analysis for networks of up to 100 inter-
connected power converters indicated that a one to two orders
of magnitude reduction (−14 to −22 dB) in distortion power
is possible when operating at the MDP, resulting in reduced
aggregate ripple. We presented and experimentally verified al-
gorithms that can dynamically solve the MDPT optimization
problem. The three algorithms—based on the gradient method,
the NL–GS method, and a metaheuristic optimizer—each have
unique properties that make them well-suited for a variety of
diverse applications. Practically, MDPT can enable improve-
ments in power quality and reductions in filter requirements (and
subsequently, volume) for a broad array of use cases, including
point-of-load conversion systems, dc microgrids, and power
management integrated circuits. Future directions for research
include considerations for ac systems, weighted cost functions,
techniques for high-bandwidth distortion sensing, and algo-
rithmic improvements to minimize the impact of steady-state
oscillations and limit cycles.

APPENDIX A
UNCOVERING THE DEPENDENCE OF D ON θ

Consider the topology in Fig. 1. Let �vbus be the ripple (ac)
voltage across Cbus. We assume that Idc contributes the dc
component of ibus, while Cbus contributes the ac component of
ibus. In this way, �vbus is a function of the ac component of ibus.
The input current to each converter i� has a real-form Fourier
series

i�(t) =
a0

�

2
+

∞�

k=1

ak
� cos (2πkt) + bk

� sin (2πkt). (4)

The Fourier coefficients ak
� and bk

� are given by

ak
� =

2

D�ξ2
k

ΔI� cos (D�ξk) +
1

ξk
(ΔI� + 2I�) sin (D�ξk) (5)

bk
� =

2

D�ξ2
k

ΔI� sin (D�ξk)

+
1

ξk
(ΔI� − 2I� + (ΔI� + 2I�) cos (D�ξk)) (6)

where ξk = 2πkT and ΔI�, I�, D�, and T are pictorially defined
in Fig. 13.

We can express (4) in complex-exponential form as

i�(t) =
∞�

k=−∞
αk

� ej2πkt (7)

where αk
� := |αk

� |ejψk
� , with

�
�αk

�

�
� :=

1

2
((ak

� )2 + (bk
� )2)

1
2 (8)

ψk
� := − arctan

�
bk

�

ak
�

�
. (9)
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Fig. 13. Time domain sketch of one period of i�(t) .

With this in place, let us now derive the Fourier-series coeffi-
cients of ibus as

ibus(t) =
N�

�=1

i�(t) (10)

=
N�

�=1

∞�

k=−∞
(αk

� ej2πkt)e−jξk θ� (11)

where θ� is the phase shift of i� with reference to an arbitrary
reference angle. Note that (10) follows from Kirchhoff’s current
law (KCL), while in (11), we have substituted for each i�

from (7), and the factor e−jξk θ� accounts for the phase shift
θ� [23]. Since ibus and �vbus are linearly related by the capacitive
impedance, we can obtain the Fourier series of �vbus as follows:

�vbus(t) =
N�

�=1

∞�

k=−∞

1

j2πkCbus
αk

� ej2πkte−jξk θ� .

=:

N�

�=1

∞�

k=−∞
βk

� ej2πkte−jξk θ� . (12)

Applying Parseval’s theorem [23] and terminating the pertinent
summation to some finite K ∈ Z +, we get the expression for
D in (2).
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