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Abstract—Sufficient conditions are derived for the global asymp-
totic synchronization of a class of identical nonlinear oscillators
coupled through a linear time-invariant network. In particular,
we focus on systems where oscillators are connected to a common
node through identical branch impedances. For such networks, it
is shown that the synchronization condition is independent of the
number of oscillators and the value of the load impedance con-
nected to the common node. Theoretical findings are then lever-
aged to control a system of parallel single-phase voltage source in-
verters serving an impedance load in an islanded microgrid appli-
cation. The ensuing paradigm: i) does not necessitate communica-
tion between inverters, ii) is independent of system load, and iii)
facilitates a modular design approach because the synchronization
condition is independent of the number of oscillators. We present
both simulation and experimental case studies to validate the ana-
lytical results and demonstrate the proposed application.

Index Terms—Inverter control, microgrids, nonlinear oscilla-
tors, synchronization.

I. INTRODUCTION

S YNCHRONIZATION of coupled oscillators is relevant
to several research areas including neural processes,

coherency in plasma physics, communications, and electronic
circuits [1]–[7]. This paper presents a sufficient condition
for global asymptotic synchronization of a class of identical
nonlinear oscillators coupled through a linear time-invariant
(LTI) network. In particular, symmetric networks composed
of oscillators connected to a common node through iden-
tical branch impedances are examined. The synchronization
condition is independent of: i) the load impedance (i.e., the
impedance connected between the common node and electrical
ground), and ii) the number of oscillators in the network. This
result is used to formulate a control and analysis paradigm for
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a decentralized power system composed of parallel voltage
source inverters serving a passive electrical load.
Relevant to this work is a body of literature that has exam-

ined synchronization conditions for diffusively coupled oscilla-
tors using passivity theory [8]–[13]. For instance, in [13], the
notions of passivity and incremental passivity [8]–[12] were
used to establish synchronization conditions that were applied
to the control of inverters as nonlinear oscillators in a power
system. Passivity-based approaches require the formulation of
a storage function, which can be difficult when the network con-
tains energy-storage circuit elements such as inductors and ca-
pacitors. Since power networks are in general composed of a
variety of LTI circuit elements (resistors, capacitors, inductors,
and transformers), passivity-based approaches are difficult to
apply in such systems. In this work, we use input-output sta-
bility methods, because they facilitate analysis in settings where
storage functions are difficult to formulate. Our approach de-
rives from previous work in [14]–[16] where methods were
used to analyze synchronization in feedback systems. To prove
synchronization, we reformulate the dynamics of the original
system in a corresponding differential system based on signal
differences. Stability of the differential system implies synchro-
nization in the original system.
The application focus of this work is a decentralized control

approach of power electronic inverters in a self-assembling and
islanded acmicrogrid. Amicrogrid is an electrical power system
containing generation, storage, and loads that can operate inde-
pendent of the bulk power system [17], [18]. Microgrids are an
enabling technology for decentralized power systems since they
provide a number of advantages including: increasing renew-
able integration, reducing transmission and distribution losses,
and ensuring a reliable power supply to loads in mission-crit-
ical applications. Design objectives of microgrids are generally
focused on minimizing communication [19], [20], maintaining
stability [21]–[24], and ensuring that inverters share the load in
proportion to their ratings [25], [26].
Inverters perform the key task of power delivery in an ac

microgrid. With advances in digital control, they can be pro-
grammed to behave as controllable voltage sources [27]. In this
work, we consider a particular islanded ac microgrid composed
of a system of identical parallel single-phase inverters serving
an impedance load. These inverters are controlled to behave as
nonlinear oscillators that are designed to synchronize by ap-
plying the synchronization criteria described previously. The
control scheme does not require communication between in-
verters (beyond the coupling inherently introduced by the elec-
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trical network), is independent of the system load (because the
synchronization condition is independent of load impedance),
and facilitates a modular design approach (because the synchro-
nization condition is independent of the number of oscillators).
Also, the inverters share the load power demand with no super-
visory control effort.
The state of the art method for inverter control in microgrids

is droop control. This method requires no communication and
is based on modulating the inverter output such that the fre-
quency and voltage amplitude are inversely proportional to the
real and reactive power output, respectively [20], [28], [29]. Re-
cently, synchronization of droop-controlled inverters has been
analyzed with equivalent Kuramoto-oscillator models, and suf-
ficient conditions for convergence and stability have been ob-
tained [30]–[32]. The oscillator-based method we propose dif-
fers from droop control in several respects. In particular, the pro-
posed approach: i) does not require computation of the real and
reactive power output, ii) demonstrates minimal deviations in
system frequency from the rated value regardless of fluctuations
in the load impedance, and iii) does not require an explicit fre-
quency and amplitude command for the inverter ac output.
It is foreseen that the analytical results in this work will pro-

vide broad theoretical utility while outlining a compelling appli-
cation to the control of inverters in microgrids. To summarize,
the contributions of this work are as follows:
1) A sufficient global asymptotic synchronization condition
is derived for a class of identical nonlinear oscillators con-
nected to a common node through identical branch imped-
ances.

2) It is shown that the synchronization condition is indepen-
dent of the number of oscillators and the load impedance.

3) These results are applied towards the control of inverters
in a single-phase microgrid to achieve a control and design
paradigm that is robust (independent of load) and modular
(independent of number of inverters).

The remainder of this paper is organized as follows: Nota-
tion and background material are presented in Section II. We
describe the network topology of interest in Section III, and de-
rive sufficient conditions for global asymptotic synchronization
of the nonlinear oscillators in Section IV. In Section V, we for-
mulate an oscillator model for inverter control and present sim-
ulations and experimental case studies. Concluding remarks are
given in Section VI.

II. PRELIMINARIES

For the -tuple , denote
to be the corresponding column vector, where indicates
transposition. The -dimensional column vectors of all ones
and all zeros are denoted by and , respectively.
The Laplace transform of the continuous-time function

is denoted by , where , and .
Transfer functions are denoted by lower-case , and transfer
matrices are denoted by upper-case .
The Euclidean norm of a real or complex vector, , is denoted

by and is defined as

(1)

where indicates the conjugate transpose. For some contin-
uous-time function , the of
is defined as

(2)

and the space of piecewise-continuous and square-integrable
functions where is denoted by [33]. A causal
system, , with input and output , is said to be finite-gain
stable if there exist finite, non-negative constants, and ,

such that

(3)

The smallest value of for which there exists a such that (3)
is satisfied is called the gain of the system and is denoted
by . If is a linear system and can be represented by the
transfer function , it can be shown that the gain of is
equal to its infinity norm, denoted by , and defined as

(4)

where , provided that all poles of have
strictly negative real parts [34]. Note that if is a single-
input single-output transfer function then

.
The electrical system of oscillators which interface to a

common node corresponds to a network with all-to-all cou-
pling. The Laplacian matrix of such a network is denoted as

, and given by

...
...

. . .
...

(5)

This particular Laplacian has the following properties: i)
, ii) the eigenvalues of are denoted by

, where and for
, iii) is symmetric with row and column sums

equal to zero such that , iv) the eigenvector
(corresponding to ) is given by , and v)
can diagonalized as , where it follows that

because . See [15], [35], [36] for proofs and additional
discussion.
A useful construct that will be employed to compare indi-

vidual oscillator outputs with the average of all oscillator out-
puts is the projector matrix, , defined as [9], [11], [15]

(6)

For some vector , we will denote , and refer
to as the corresponding differential vector (in previous work,
see, e.g., [9], [11], [14]–[16], the quantity was referred to as
an incremental quantity). A causal system, , with input and
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Fig. 1. The oscillator model in this work is composed of a linear subsystem,
, and a nonlinear voltage-dependent current source, .

output , is said to be differentially finite-gain stable if there
exist finite, non-negative constants, and , such that

(7)

where . The smallest value of for which there exists
a such that (7) is satisfied is called the differential gain of
the system and is denoted by .

III. SYSTEM OF COUPLED OSCILLATORS

In this section, a system of nonlinear coupled oscillators is
introduced. We consider a network topology where all oscilla-
tors are connected to a common node through identical imped-
ances. A corresponding differential system is then developed to
facilitate synchronization analysis.
Our interest in this particular topology stems from the fact

that inverters in a microgrid are often connected in parallel to
serve a load [20], [37]. In the forthcoming section, we will show
that the synchronization condition for this network is indepen-
dent of the number of oscillators and the load impedance. This
is a useful result, because it implies the system can be designed
without a priori information of the load parameters and number
of inverters.

A. System Description

As shown in Fig. 1, the electrical oscillator under considera-
tion has: i) a linear subsystem composed of passive circuit el-
ements with impedance , and ii) a nonlinear voltage-de-
pendent current source . We will require that be con-
tinuous and differentiable, and additionally impose

(8)

Fig. 2 depicts an electrical network of such oscillators con-
nected to a common (load) node through identical branch im-
pedances, (whichmay contain any combination of linear
circuit elements). The oscillators deliver power to a passive
LTI load, , which is connected at the common node. The
coupling between oscillators is captured by

(9)

where is the vector of oscillator
output currents, is the vector of os-
cillator terminal voltages, and is the network admittance
matrix.

Fig. 2. parallel oscillators interconnected through an LTI electrical network
containing a passive impedance load.

A closed-form expression for will now be derived. To-
wards this end, notice from Fig. 2 that the oscillator output
current is given by

(10)

where the load voltage, , can be expressed as

(11)

Substituting (11) in (10) yields

(12)

from which can be isolated to obtain

(13)

Collecting all terminal voltages,

(14)

Comparing (14) with (9) indicates

(15)
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Fig. 3. Representation of coupled oscillator system. The linear and nonlinear
portions of the system are compartmentalized in and , respectively.

Fig. 4. Block-diagram representation of the corresponding differential system.
The linear and nonlinear portions of the system are compartmentalized in
and , respectively.

The above expression can be inverted to obtain

(16)

where are given by

(17)

See Appendix A for a proof of the above result. Using the ex-
pressions for in (16)–(17), it is possible to redraw the mi-
crogrid network in Fig. 2 as another equivalent network con-
taining admittances and .
We now seek a representation of the system in Fig. 2, where

the linear and nonlinear portions of the system are clearly dif-
ferentiated. Towards this end, first note that the terminal voltage
of the oscillator, , can be expressed as

(18)

Writing all ’s in matrix form yields

(19)

where
, and in the second line of (19),

we have substituted from (9). We can isolate
from (19) as follows:

(20)

where is the linear frac-
tional transformation, and represents in negative feed-
back with [38]. In general, for some of appropriate
dimension, the linear fractional transformation is defined as

(21)

Using (20), the system of coupled oscillators admits the com-
pact block-diagram representation in Fig. 3. The linear and non-
linear portions of the system are clearly compartmentalized by

and , respec-
tively.

B. Corresponding Differential System Description

Global asymptotic synchronization of the coupled oscillator
system in Section III-A corresponds to the condition

(22)

For ease of analysis, we will find it useful to transform to a co-
ordinate system based on signal differences. Towards this end,
we employ the projector matrix in (6), noting that [14], [15]

(23)

Therefore, it is evident that the synchronization condition in (22)
is equivalent to requiring as . Hence-
forth, we will refer to the system where all vectors are trans-
formed by the projector matrix as the corresponding differential
system.
We will now use the dynamics of the original system to

construct the corresponding differential system, the stability of
which will imply synchronization in the sense of (22). Towards
this end, the differential terminal-voltage vector, , can be
expressed as

(24)

where in the first line, we have substituted for from (19); in
the second line, we have used the relation from
(9) and the fact that

; and in the last line, we have used the property that
the projector and admittance matrices commute, i.e.,

(this follows straightforwardly from the fact that
). We can now isolate in (24) as follows:

(25)

Notice the similarity between (25) and (20); i.e., the linear frac-
tional transformation also maps to .
Finally, we can define a map that captures the impact of
in the corresponding differential system as follows:

(26)

We now have a complete description of the corresponding dif-
ferential system. In particular, this system admits the block-dia-
gram representation in Fig. 4, where, as in Fig. 3, the linear and
nonlinear subsystems are compartmentalized using and
, respectively.
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IV. GLOBAL ASYMPTOTIC SYNCHRONIZATION

In this section, we derive a sufficient condition that ensures
global asymptotic synchronization in the sense of (22) for the
system of oscillators described in Section III-A.
First, we present a lemma that will establish an upper bound

on the differential gain of .
Lemma 1: The differential gain of is finite and upper

bounded by :

(27)

Proof: By definition of , for any pair of terminal voltages
and , and the corresponding currents and , where

, the mean-value theorem [34] can be applied
to give

(28)

Summing over all indices, , we arrive at

(29)

which can be rearranged and simplified as

(30)

Since (30) holds for any set of terminal voltages, we obtain

(31)

which can be rewritten compactly using the projector-matrix
notation in (23) as follows:

(32)

By definition of the differential gain, we have

(33)

Applying (32) in the definition above, we attain

(34)

which completes the proof.

We now prove the main result of this work: a sufficient con-
dition for global asymptotic synchronization in the network of
oscillators described in Section III-A.
Theorem 1: The network of oscillators coupled through (9)

with the admittancematrix as defined in (16)–(17), synchronizes
in the sense of (22), if

(35)

Proof: Consider the block-diagram of the differential
system in Fig. 4. Denoting the differential gain of the linear
fractional transformation by , we have

(36)

for some non-negative . From Lemma 1, we also have

(37)

Combining (36) and (37), we arrive at

(38)

Let us assume that

(39)

Isolating from (38), we can write

(40)

which implies that . It follows from Barbalat’s lemma
[14]–[16], [34] that

(41)

That is, if the system of oscillators satisfies the condition in (39),
global asymptotic synchronization can be guaranteed.
We will now derive the result in (35) by showing

.
From the definition of the linear fractional transformation
in (21) and the general form of the admittance matrix
in (16), note that

(42)

where we have defined

(43)
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with and given in (17). Now, by definition of the
differential gain of the linear fractional transformation, we
can express

(44)

where, we have diagonalized and recognized that
. We will now make two key observations to sim-

plify (44):
i) The first column of is given by . Fur-
thermore, . Therefore, the vector

is given by

(45)

where is made up of the non-zero ele-
ments of .

ii) Denote the diagonal matrix with entries made up of the
non-zero eigenvalues of by . By definition of in
Section II, we see that .

Using the two observations highlighted above, we can sim-
plify (44) as follows:

(46)

Finally, for the and in (17), we can simplify
as follows:

(47)

which completes the proof.
The condition for synchronization in (35) is independent of

the number of oscillators, , and the load impedance, .

Fig. 5. The functions (a) and (b) illustrated for the Van der Pol
(dashed lines) and dead-zone (solid lines) oscillators. For the dead-zone
oscillator, .

It depends only on the impedance of the parallel combination of
and .

In Appendix C, we discuss how the results presented above
can be extended to the case where the oscillators are not homo-
geneous, and the network branch impedances are not identical.

V. CASE STUDIES

The proposed microgrid control is grounded on programming
inverters to emulate nonlinear oscillators. Towards that end, we
first present the particular oscillator model which will form the
basis of the inverter control. Next, we describe the parameter
selection approach to ensure the inverters synchronize while
ensuring the load voltage and system frequency meet perfor-
mance objectives. We also describe how the controller can be
implemented on a digital platform. Finally, simulation and ex-
perimental case studies that demonstrate the analytical results
as applied to inverters in a microgrid are presented.

A. Nonlinear Oscillator Description

In this work, we utilize a dead-zone oscillator, in which the
nonlinear voltage-dependent current source is given by

(48)

where is a continuous, differentiable dead-zone function
with slope , and for . Furthermore,
the linear subsystem is a parallel circuit:

(49)

The functions and are illustrated in Fig. 5.1 The ter-
minal voltage of the dead-zone oscillator satisfies

(50)

The existence of a stable and unique limit cycle can be deter-
mined with the aid of Liénard’s Theorem, which is stated below.

Theorem 2: (Liénard’s Theorem [4]) Consider the system

(51)

1The proposed dead-zone oscillator is very similar to the well-known Van
der Pol oscillator. To facilitate comparison, the functions and for the
Van-der-Pol oscillator are superimposed in Fig. 5.
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Fig. 6. Phase plot of steady-state limit cycles in the (a) dead-zone and (b) Van
der Pol oscillators for varying .

where and are differen-
tiable, even and odd functions, respectively. Define

(52)

The system in (51) has a unique and stable limit cycle if: i)
, ii) has one positive zero for some

, iii) when , and iv) monotonically
increases for and .

We can rewrite (50) by expressing the derivatives of with
respect to to yield

(53)

which is of the form in (51), with

(54)

For the case , it is easy to see that , and
satisfy the conditions in Liénard’s theorem, implying that

the dead-zone oscillator has a stable and unique limit cycle. The
steady-state limit cycles of the dead-zone oscillator for different
values of are plotted in Fig. 6(a).
For comparison, the limit cycles of the Van der Pol oscillator
for the same set of parameters are shown in Fig. 6(b). When

, it can be shown that the steady-state oscillation will
have a frequency approximately equal to [34], and as
shown in Fig. 6(a), the limit cycle is approximately a circle in
the current-voltage space.

B. Parameter Selection and Controller Implementation

In all the case studies, we consider a network with the
topology in Fig. 2. The network branch impedance is given by

, where and equal the series
combination of the line and inverter-output-filter inductance and
resistance, respectively (the inverter output-filter inductance

Fig. 7. Controller implementation that ensures the H-bridge inverter emulates
the behavior of the nonlinear dead-zone oscillator.

reduces harmonics which arise due to switching [27]). Finally,
we assume the load is resistive such that (note
that our result applies in general to any passive LTI load). For
this system, the linear fractional transformation is given by

(55)

where
, and .

The design objective is to guarantee that the inverters syn-
chronize their voltage outputs, and oscillate at the desired fre-
quency. Additionally, in steady-state we will require to
stay within % of the rated voltage across the entire load range
(no-load to maximum rated load). For a given filter impedance,

, the above design objective can be satisfied by proper
selection of the oscillator linear- and nonlinear-subsystem pa-
rameters including: , and .
To ensure oscillations at the rated system frequency,
, the values of , and must be selected such that

. Further, we must ensure that

is minimized to guarantee that the ter-
minal inverter voltages are sinusoidal, and is picked so that

to guarantee synchronization.
The value of can be tuned with an open-circuit test to ensure
that the inverter output voltage is no more than the peak allowed
load voltage.
Fig. 7 illustrates how the oscillator-based controller is imple-

mented for a single-phase H-bridge inverter. As shown, the ter-
minal current of the inverter is measured, and extracted from the
virtual oscillator. The modulation signal, , is the scaled oscil-
lator voltage. The inverter switching signals are generated by
comparing the modulation signal with a triangle carrier wave-
form [27]. With the proposed method, the inverter emulates the
dynamics of the nonlinear dead-zone oscillator. Discretization
of the virtual oscillator differential equations is straightforward,
and the proposed controller can be implemented on a standard
microcontroller.
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Fig. 8. Evolution of oscillator state variables during startup in the presence of
a load. Waveforms for only 10 inverters out of 100 simulated are shown for
clarity.

C. Simulation and Experimental Results

We now present simulation and experimental results to vali-
date the analytical methods in a microgrid application. In par-
ticular, we demonstrate that a system of inverters controlled
as deadzone oscillators satisfying (35) synchronize and deliver
power to a load.
In case studies I and II, a microgrid consisting of 100 parallel

inverters which are each rated for 10 kW was simulated. The
RMS voltage and frequency ratings of the system are 220 V and
60 Hz, respectively, and the maximum load power is 1 MW. In
case study III, we provide experimental results for a laboratory
prototype which consists of three parallel inverters. The system
parameters used in the case studies are summarized in Table I
in Appendix B.
Case Study I (Simulation): Substituting the param-

eter values from Table I into (55), it can be shown that
, which guarantees

synchronization. At , all currents are zero and the oscil-
lator capacitor voltages are randomly selected between
V. Initially, the system contains no load. After successful
synchronization, the load is abruptly added at ms. As
shown in Fig. 9, the voltage stays within % of the rated
value in steady state.
A second simulation was conducted to demonstrate synchro-

nization in the presence of the load (in other words, the load
is connected at ). Given the same initial conditions as
above, Fig. 8 illustrates the trajectories of the oscillator state
variables (only 10 out of 100 waveforms are shown for clarity).
The inductor current within the oscillator circuit is de-
noted as . As shown in Fig. 8, the state-variables reach a stable
limit cycle.
Case Study II (Simulation): All parameters, except ,

were reused. The value of was reduced such that
, and synchronization

is not guaranteed. As illustrated in Fig. 10, the inverters do not
synchronize.

Fig. 9. Inverter output currents, voltages, and voltage synchronization error in
the case when .

Fig. 10. Inverter output currents, voltages, and voltage synchronization error
when and synchronization is not guaranteed.

Case Study III (Experimental): We have built a hardware pro-
totype comprising three parallel H-bridge inverters and a resis-
tive load. A schematic of the experimental hardware setup is
given in Fig. 11. The switches in the schematic are N-channel
power MOSFETs. Each inverter is rated to deliver 50 W and
supplied by a 100 V dc voltage source at the input. The con-
trollers in Fig. 11 regulate the switching action such that each
inverter behaves like a dead-zone oscillator. Corresponding pa-
rameters in Table I were selected such that the system oscil-
lates at 60 Hz while maintaining a 60 V % RMS voltage for
all load conditions. Furthermore, synchronization is guaranteed
since . Fig. 12 shows
the output currents and load voltages during startup with a 72
W load. The oscillator capacitor voltages were initialized to
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Fig. 11. Schematic of the electrical circuit in the experimental setup.

Fig. 12. Oscilloscope screenshot for measured inverter output currents and
load voltage.

within each controller to demonstrate
synchronization in spite of non-identical intitial conditions.

VI. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE
WORK

A synchronization condition for nonlinear oscillators coupled
through a symmetric LTI network was derived. The condition
was shown to be independent of the number of oscillators and
the load parameters. We also proposed that parallel inverters in
a microgrid be controlled to act as dead-zone oscillators. The
resulting microgrid design is modular and does not require com-
munication between inverters. Simulation and experimental re-
sults were used to substantiate the analytical results and illus-
trate the merit of the proposed application.
An important direction for future work is to extend the

method presented to address synchronization in three-phase

inverters with constant-power loads. Additionally, synchroniza-
tion in other network topologies can be investigated with the
general approach that we have outlined in this work. Finally,
the power quality delivered to the load needs to be investigated
by studying the impact of oscillator parameters on the harmonic
content in the inverter output waveforms.

APPENDIX

A. Derivation of in (16)

Diagonalizing , we can express (15) as fol-
lows:

(56)

It is easy to show that . Sub-
stituting this in (56), we then obtain

(57)

Inverting (57), we get

(58)

From the definition of in (17), we can write

(59)

This can be simplified as follows:

(60)

where in the last line, we have used the definition of from (5).
Notice that (60) is in the same form as (16), with and
given in (17).

B. Parameters for Simulations and Experiments

The inverter and electrical network parameters used in the
simulation and experimental case studies are given in Table I.
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TABLE I
SYSTEM PARAMETERS USED IN THE CASE STUDIES

C. Heterogeneous Oscillators and Nonidentical Branch
Impedances

For real-world microgrid applications, it is unlikely that the
branch impedances of the network are identical, and the oscil-
lators (inverters) are homogeneous. However, we can incorpo-
rate these sources of uncertainty in the synchronization condi-
tion straightforwardly.
First, we attempt to give conditions under which small differ-

ences among oscillators leads to small synchronization errors.
Towards this end, replace the matrix with

, where represents
the nominal oscillator impedance and is a diagonal ma-
trix that captures deviations of each actual oscillator impedance
from the nominal value. With this setup, (25) is modified to

(61)

where . Combining (61)
with the nonlinear subsystem , we find that if the condition

(which follows from Theorem 1),
is satisfied, then the feedback combination of (61) with

will synchronize when . Furthermore, taking
the norm of both sides of (61)

(62)

for some constant that depends on initial conditions. In addi-
tion, recall that the nonlinear subsystem is such that

. Using the same small-gain argument employed in the
case of identical oscillators, the synchronization error in

if network solutions are bounded such that and if
since this would guarantee

(63)

In other words, for a network of inverters with different
, the maximal synchronization error over all time

will be upper bounded so long as the small gain condition
holds, and all network signals are

bounded. Further, this bound will be governed by the maximum
value of over time, according to the relation (63). Since
depends directly on (which quantifies the differences
between network nodes), smaller will reduce the maximal
asymptotic synchronization error in to the extent that if
is equal to the zero matrix, this error will also reduce to zero,
retrieving the original result of Theorem 1.

Now consider that the branch impedances are not identically
equal to , but for the system of inverters, they are
given by the vector .
For the branch impedance, we will denote

, where , and is some nominal
branch impedance. We will also find it useful to define the
vector . In this case, with
reference to Fig. 7, we would design the controller for
the -th inverter to extract the current . With this
setup, it is straightforward to show that the admittance ma-
trix is given by , where

and ,
with . Using this admittance
matrix and applying the same analysis in Theorem 1, we get
the synchronization condition:

(64)
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