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Abstract—In this paper, the dynamics of neutral-point (NP)
voltage oscillations and associated instability phenomena in a
three-level (3L) neutral-point clamped inverter (NPCI), operating
as a grid-following (GFL) inverter, are analytically modeled. We
depart from the traditional space-vector analysis and adopt a
time-domain description in synchronous (dq) reference frame
for system modeling. In particular, the NP voltage on the dc-
side is identified as an additional system state unlike in a
traditional 2L-inverter model. We obtain an averaged dynamic
model of the current-controlled 3L GFL-inverter in state-space
form. While the model is nonlinear and time varying, it compre-
hensively captures all pertinent dynamics of the GFL-inverter
while acknowledging the participation of power- and control-
circuit parameters in determining the NP-stability. We present a
block-schematic dq-domain equivalent circuit of the average 3L
GFL-inverter model delineating the 2L inverter control model
contained with it and the additional dynamics arising from
switching the NP branch. We utilize this model for two purposes:
(a) feedback linearization of the plant model using feed-forward
compensation of nonlinear and time-varying terms, which facili-
tates controller design using classical control synthesis techniques,
and (b) improving injected grid-current quality. A full-order
switched-model simulation of a three-phase GFL-inverter system
in MATLAB®Simulink validates the accuracy of the proposed
average dynamic model for NP-stability studies as well as grid
current quality improvement.

I. INTRODUCTION

Pulse-width modulated (PWM) three-level (3L) neutral-
point clamped inverter (NPCI) is a classical and popular
voltage-source inverter (VSI) topology. It is considered a
workhorse in industry and widely deployed across power-
conversion applications [1], [2]. In terms of averaged circuit
dynamics and their implications on controller design, the 3L
NPCI is routinely deemed to be identical to a conventional 2L-
VSI [3]. This consideration, however, is justified only when
the NP potential is held stiff, e.g., when split dc sources are
employed to power the positive and negative dc-buses sepa-
rately. However, this may not be true in every application; e.g.,
in medium and high power grid-integrated solar photovoltaic
(PV) systems, the PV array typically feeds the entire dc-
bus [4]–[6]. Feeding the total dc-bus from a single dc source is
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(a)

Fig. 1: (a) A 3L-NPCI-based GFL-inverter system showing the
physical power-stage and control-layer architectures.

also a low-cost option commonplace in VSI designs. In these
scenarios where no mechanism exists to keep the NP voltage
stiff, the simplifying assumption of equivalence with a regular
2L-VSI in terms of of average circuit dynamics is not valid.

This is because the 3L NPC topology introduces addi-
tional dynamic characteristics during operation; e.g., the third-
harmonic oscillations in NP voltage are a known phenomena
reported in 3L NPCI literature [3], [7]–[9]. Another concern
that deserves attention is the sensitivity of the NP voltage and
its stability under closed-loop system operation. We illustrate
this with a short example. Figure 1 shows a GFL-inverter
system with a T-type 3L NPCI topology that has an L-filter Lf

on the line side and a PI-based current-controller in the control-
layer. This is a typical interface architecture for GFL PWM
inverters [4], [10]. The nominal dc-bus voltage considered here
is 400V. The dynamics of individual dc-bus capacitor voltages
vc1, vc2 (sitting at 200V nominal value) along with the a-
phase PWM pole-voltage vi

a are shown in Fig. 2(a,b) for a
real-current reference command change (in iq⋆i ) for two cases
of filter-inductor values. (The third-harmonic ripple in vc1, vc2
due to NP oscillations during inverter operation can be noted.)
In this switched-model simulation comparison, the two cases
have a stable current loop with identical and well designed
control bandwidth of 1kHz. It can be seen that a higher value
of Lf leads to an unstable drift in the NP voltage following
the reference change, leading to maloperation of the inverter
as demonstrated in Fig. 2(b).

The issue of NP drift and stability has indeed received
attention in prior art [3], [11], [12]. In these efforts, space-978-1-6654-3635-9/21/$31.00 ©2021 IEEE20
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Fig. 2: Dc-bus capacitor voltages vc1 (= vdc+ ) and vc1
(= −vdc− ) along with a-phase PWM pole-voltage vi

a are
shown for (a) stable case with Lf = 0.5mH, and (b) unstable
case with Lf = 2mH.

vector-based perspectives are provided to give static models for
the analysis of NP voltage. Other works in [13]–[15] discuss
the issue of NP stability and propose active and hybrid space-
vector modulation techniques to achieve NP-voltage balance
during operation. Indeed, a more suitable approach for charac-
terizing NP-voltage behavior during operation is via dynamic
models. This is attempted in [16]–[18]. Although these efforts
present a dynamic model for analysis of 3L inverter systems,
they do not comprehensively acknowledge the influence of
filter and controller parameters on the NP stability. Nonlinear
dynamic models for the 3L NPCI are developed in [19],
[20]. However, these models do not capture the nonlinearities
arising due to NP oscillations; a characteristic feature of
the 3L topology. These are either assumed to be zero to
facilitate small-signal linearization, or rendered to be zero via
generalized state-space averaging methods. This assumption
does not hold true for all designs in general as the NP voltage
oscillations may assume a sizable value depending on the size
of dc-link capacitors employed [8]. In essence, although the 3L
NPCI is a classical inverter topology that has long existed, a
comprehensive dynamical system model along with a compact
equivalent circuit that accurately captures the NP instability
while factoring in the influence of all the dynamic elements,
parameters, and nonlinearities present in the system is lacking
in the literature.

In this paper, we address this gap by proposing an averaged
dynamic model of the 3L-NPCI-based GFL inverter to facil-
itate study of NP-voltage dynamics and instability. Departing
from the traditional space-vector perspective, we derive the
system model in synchronous (dq) reference frame in state-
space form. We reveal that, in view of the NP connection,
the system dynamics are rendered nonlinear and time varying.
We then furnish a block-schematic equivalent circuit of the
average 3L GFL-inverter model and also delineate it from
the traditional 2L-VSI control model (contained within) by
highlighting the additions and changes arising due to the
NP connection. Such a concise dq-domain equivalent circuit
representation elucidating the linear and nonlinear dynamics
in a 3L-NPCI-based GFL-inverter is lacking in the literature.

(a) (b)

Fig. 3: (a) Circuit schematic of 3L-NPCI leg, and (b) DM and
CM modulation references mabc

i & m̂abc
i , and average a-phase

duty-ratio functions da+, da− with PWM signals.

We leverage the model for feedback linearization of the plant
model, which facilitates PI controller design through classical
synthesis techniques. We achieve this by estimating the non-
linear time varying terms (which constitute the disturbance
inputs to the plant) and cancelling them in real-time via
appropriate feed-forward compensation in the control loop.
This process also yields a notable improvements in the injected
grid current quality. We demonstrate these effects as well as the
sensitivity of NP-voltage stability to power- and control-circuit
parameters through a suite of case-study comparisons with
a full-order switched-model simulation of the GFL-inverter
in MATLAB®Simulink, thus validating the model accuracy.
The proposed model can be readily extended to other power-
conversion systems involving such a current-controlled 3L-
NPCI, e.g., grid-forming inverters, STATCOMS, and variable
speed motor-drives.

II. PWM SCHEME AND AVERAGE OUTPUT-VOLTAGE
EVALUATION

We begin with the PWM scheme for a T-type 3L-NPCI
(see Fig. 3(a) for schematic) and evaluate its averaged output
voltage. The generalized positive and negative dc-bus voltages,
v+dc and v−dc, which include the differential-mode (DM) ripple
ṽdm and the common-mode (CM) NP-voltage ripple ṽnp, are
given by:

v+dc = vc1 =
Vdc

2
+

ṽdm
2

+ ṽnp, (1a)

v−dc = −vc2 = −Vdc

2
− ṽdm

2
+ ṽnp. (1b)

In this work, we consider conventional carrier based sine-
triangle PWM technique for the semiconductor switches in
the 3L NPCI. The duty-ratio functions for conventional PWM
techniques are typically discontinuous and time-shifted half-
wave rectified sine waves. For instance, phase-disposition (PD)
PWM is commonly used in 3L-NPCI [21]. The switching-
cycle averaged duty-ratios of the active-state switches, da+
(= ⟨SSa

1
⟩Ts

) and da− (= ⟨SSa
2
⟩Ts

), for the a-phase T-type leg
are given below [9]: (see Fig. 3(b) for visualization)

da+ =

{
msin θ 0 ≤ θ ≤ π
0 π < θ ≤ 2π

, (2a)
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da− =

{
0 0 ≤ θ < π
msin θ π ≤ θ ≤ 2π

, (2b)

da0 = 1− (da+ + da−). (2c)

where, m is the modulation index, θ = ωt is the instantaneous
phase, and da0 is the average zero-state duty-ratio. Similar duty-
ratio functions can be constructed for b- and c-phases with
appropriate phase shifts. Taken together, we express them as
vectors: dabc+ = [da+, d

b
+, d

c
+]

⊤, dabc− = [da−, d
b
−, d

c
−]

⊤. We
employ (1) and (2) to evaluate the three-phase output voltage
vabci = [vai , v

b
i , v

c
i ]

⊤. For further analysis, we assume ṽdm = 0,
as the dc link is typically fed by a stiff source; but ṽnp assumes
a finite value depending on the size of dc-link capacitors and
NP current [8]. We get the following general expression for
the averaged 3L-NPCI output in vector form:

vabci = ⟨vabc
i ⟩Ts

= v+dc⟨SSabc
1
⟩Ts

+ v−dc⟨SSabc
2
⟩Ts

,

= v+dcd
abc
+ + v−dcd

abc
− ,

=
Vdc

2
(

mabc
i︷ ︸︸ ︷

dabc+ − dabc− ) + ṽnp(

m̂abc
i︷ ︸︸ ︷

dabc+ + dabc− ),

=
Vdc

2
mabc

i + ṽnpm̂
abc
i . (3)

where, mabc
i = [ma

i ,m
b
i ,m

c
i ]
⊤ denotes the DM three-phase

modulation references for the inverter legs (derived from the
current controller output), which, in steady state, are continu-
ous sinusoidal functions:

mabc
i =

 msin θ
msin(θ− 2π

3 )
m sin(θ+ 2π

3 )

 . (4)

Similarly, the term m̂abc
i = [m̂a

i , m̂
b
i , m̂

c
i ]
⊤ represents the CM

modulation references (see Fig. 3(b) for wave-shapes) arising
in the 3L topology, which, along with the dc-side NP ripple
causes nonlinearity and harmonic distortions on the ac-side via
the term ṽnpm̂

abc
i in (3). These are expressed as follows:

m̂abc
i =

 m| sin θ|
m| sin(θ− 2π

3 )|
m| sin(θ+ 2π

3 )|

 , (5a)

=
2m

π
1−

∞∑
n=2,4,..

4m

π(n2−1)

 mcosnθ
mcosn(θ− 2π

3 )
m cosn(θ+ 2π

3 )

 . (5b)

where, 1 = [1, 1, 1]⊤. Equation (5b) above is obtained by
replacing the rectified sine waves in (5a) with their respective
Fourier-series expansions, as done in [9]. The effort in [9]
presents a static model for quantifying the amplitude of ac-side
distortions in steady-state in a standalone 3L-NPCI operating
in open loop. In this paper, we extend this work and develop a
dynamic model of a 3L-NPCI under closed-loop operation as a
GFL-inverter for control synthesis and NP stability assessment.

III. MODELING 3L GFL-INVERTER IN SYNCHRONOUS
REFERENCE (dq) FRAME

Consider the GFL-inverter system shown in Fig. 1, tied to
the grid vabcg via the inductive-filter Lf (with resistance rf ), that

uses a three-phase synchronous reference frame (SRF) phase-
locked loop (PLL) for grid synchronization [4]. For tracking
the current references idq⋆i = [id⋆i , iq⋆i ]⊤, a PI-based current
controller is realized. We base the following modeling and
analysis on three key assumptions:

1) stiff grid with negligible source impedance, and
2) PLL has settled (yields grid frequency and phase infor-

mation ω, θ) and does not affect system dynamics
We develop the dynamic equations of the GFL-inverter system
in this setting. We utilize the following definition:

T =
2

3

 cos θ cos(θ− 2π
3 ) cos(θ+ 2π

3 )

− sin θ − sin(θ− 2π
3 ) − sin(θ+ 2π

3 )
1
2

1
2

1
2

 , (6)

where, T represents Park’s transformation matrix, and the
phase information θ is available from the PLL. It follows that:

T Ṫ−1 =

[
0 −ω 0
ω 0 0
0 0 0

]
, (TT⊤)−1=

 3
2 0 0
0 3

2 0
0 0 3

 . (7)

We further denote xdq0 = Txabc = [xd, xq, x0]⊤. Since the
dynamics of the three-phase system are unaffected by the zero-
sequence components in the model, we disregard these terms
in further developments and drop the use of label ‘0’ in the
notations wherever applicable.

A. Current-controller Dynamics
Let the integrator states and controller outputs be denoted

by γdq
i , and mdq

i , respectively. The current controller is tuned
to achieve the desired bandwidth of f bw

i (Hz). The model
equations for the current controller are given by:

dγdq
i

dt
= idq⋆i − idqi , (8a)

mdq
i = kp(i

dq⋆
i − idqi ) + kiγ

dq
i . (8b)

where, kp and ki are the PI controller gains that are selected
such that the bandwidth of the current loop is set to the desired
value f bw

i .

B. Power-circuit Dynamics for 3L GFL-inverter
For the inverter power circuit, the ac-side KVL equation in

abc-frame is well known and is given by [10],

diabci

dt
= − rf

Lf
iabci +

1

Lf
(vabci − vabcg ). (9)

We use (3) in the above and apply Park’s transformation in (6).
This yields the plant’s dynamical model:

didqi
dt

= − rf
Lf

idqi +
1

Lf

(
Vdc

2
mdq

i + ṽnpm̂
dq
i

)
− 1

Lf
vdqg − T Ṫ−1idqi . (10)

where, ṽnpm̂
dq
i represent the nonlinear time-varying (NLTV)

terms. The controller outputs mdq
i are typically dc signals in
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Fig. 4: Waveshapes of dq-domain duty-ratio signals mdq
i and

m̂dq
i illustrating their dc and time-varying nature, respectively.

The corresponding xy-plots are also shown.

steady state and correspondingly, mabc
i are pure sinusoidal

functions. However, since m̂abc
i are rectified sine-waves car-

rying only even harmonics (see Fig. 3(b) and equation (5)),
their dq-frame equivalent, m̂dq

i , are time-varying quantities
composed of triplen harmonics. These are illustrated in Fig. 4
and are expressed as follows:

m̂d
i =

∞∑
k=1,2,..

−(A3k−1+A3k+1) cos 3kωt, (11a)

m̂q
i =

∞∑
k=1,2,..

(A3k−1−A3k+1) sin 3kωt. (11b)

where, ∥ · ∥ denotes Euclidean norm. The coefficients, An, are
expressed as follows:

An =
4∥mdq

i ∥
π(n2 − 1)

. (12)

Note that such a formulation for power circuit dynamics in-
cluding the NP voltage ripple, as in (10)–(12), is a noteworthy
contribution to the models in prior-art.

C. Neutral-point Voltage Dynamics
From the definitions in (2) and (3), the NP current in abc-

frame is given by inp = (dabc0 )⊤iabci = (1 − m̂abc
i )⊤iabci

[8], [12]. This current flows into the dc-link capacitors Cdc

via the neutral point, causing a fluctuation in the NP voltage,
which can be expressed as ṽnp = 0.5(v+dc + v−dc). This is a
phenomenon characteristic to the 3L-NPCI topology and is
not applicable to traditional 2L-VSIs. Hence, the NP voltage
constitutes an additional state in the GFL-inverter system and
has to be modeled alongside other dynamical states. The NP
current and voltage dynamics can be expressed in the dq-frame
as follows:

inp = −4

9
(m̂dq

i )⊤(TT⊤)−1idqi =− 2

3
(m̂d

i i
d
i + m̂q

i i
q
i ), (13)

2Cdc
dṽnp
dt

= inp,

dṽnp
dt

= − 1

3Cdc

(
m̂d

i i
d
i + m̂q

i i
q
i

)
. (14)

where, m̂d
i i

d
i and m̂q

i i
q
i can be recognized as nonlinear & time

varying terms in the dynamical model.

D. Proposed Dynamic Model of 3L GFL-inverter

Note that the differential equations (10) and (14), which
correspond to the models of the plant (for GFL current control)
and the NP dynamics, respectively, contain nonlinear time-
varying terms. Thus, we combine and rewrite (8)-(14) in the
state-space form ẋ = Ax + Bu + G(x, u, t). Denote x =
[idqi , γdq

i , ṽnp]
⊤, u = [idq⋆i , vdqg ]⊤, and I2 be a 2 × 2 identity

matrix. We obtain the following dynamic model for the overall
GFL-inverter system:

d

dt

 idqi
γdq
i

ṽnp

=

−1
Lf

(
rf+

kpVdc

2

)
Ψ ki

Lf

Vdc

2 I2 0

−I2 0 0
0 0 0


 idqi
γdq
i

ṽnp


+

kp

Lf

Vdc

2 I2 −I2
I2 0
0 0

[idq⋆i

vdqg

]
+G(x, u, t), (15)

where, the vector function G(·), is given by,

G(x, u, t)=


ṽnp∥kp(idq∗i − idqi ) + kiγ

dq
i ∥

[
f1(t)
f2(t)

]
O2×1

−4
3Cdc

∥kp(idq∗i − idqi ) + kiγ
dq
i ∥(idqi )⊤

[
f1(t)
f2(t)

]
 .

The time varying vector function [f1(t), f2(t)]
⊤ is given by,[

f1(t)
f2(t)

]
=
−4

π

∞∑
k=1,2,..

(
1

(3k−1)2−1 + 1
(3k+1)2−1

)
cos 3kωt(

1
(3k−1)2−1 − 1

(3k+1)2−1

)
sin 3kωt

 .

and, the matrices Ψ and O2×1 are expressed as:

Ψ =

[
1 −ω
ω 1

]
,O2×1 =

[
0
0

]
.

The above time-domain model governs the NP dynamics of
the 3L NPCI, as well as that of the overall GFL-inverter. This
model is compact and comprehensively captures all relevant
dynamics in the system while factoring in the participation of
power- and control-circuit parameters. Notice that the above
model is nonlinear and time varying. (We remark that the
time-varying attribute of the system model is not captured by
many of the earlier efforts that develop dynamic models for
3L NPCI, e.g. [18]–[20].) Due to this, one cannot straightaway
apply classical control design tools to select the controller
parameters, kp and ki. To facilitate control design, we present
a dq-domain equivalent-circuit of the system next.
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Fig. 5: Block-schematic equivalent circuit model in dq-domain
of the 3L-NPCI-based GFL-inverter system showing the 2L
control model contained within it (colored in black), and, the
NP dynamics along with other additional elements (colored in
red) that are present as a result of switching the NP branch.

IV. EQUIVALENT CIRCUIT IN dq-DOMAIN

In this section, we present a block-schematic dq-domain
equivalent-circuit model of the 3L GFL-inverter. (See Fig. 5.)
The section of the model colored in black, consisting of
the controller and a part of the overall plant, represent the
control model of a regular 2L-VSI; the 2L model is ubiquitous
and extensively discussed in prior-art. The portion colored in
red represents the dc-side NP dynamics and other additional
elements, that arise as a result of introducing and switching
the NP branch devices in a 3L NPCI; this portion of the
plant contains the time-dependent functions and other product
terms that render the model nonlinear and time-varying. Such
a concise equivalent circuit model in dq-frame for a 3L NPCI
has been lacking in the literature, although 3L NPC topology
has long existed. Simulation of such an average model is
computationally much more efficient compared to that for the
switched case; it also facilitates control parameter tuning as
well as stability assessment of the NP voltage. Furthermore,
the model can be leveraged for analytical control design as
well as grid-current THD improvement, as described next.

A. Feedback Linearization

An obvious question that arises now is how to design the PI
current controller for a such a nonlinear time-varying system.
It is clear that one cannot directly apply classical control
synthesis techniques to the 3L inverter model for controller
design, due to the nonlinear nature of the system. Also,
linearization of the above model via small-signal perturbation
around an equilibrium point is not straightforward, given the
time varying nature of the model. However, the structure of
the system is amenable for feedback linearization of the plant
via change of control input variables (a step that essentially
negates and eliminates the nonlinear and time-varying terms
from the plant model [22]). We leverage the average model for
this purpose; we estimate the nonlinear time-varying quantities
ṽnpm̂

d
i and ṽnpm̂

q
i from the average model, translate them into

appropriate modulation references and add them to the control
input (inside the control layer) of the switched model with

-

Fig. 6: The 3L GFL-inverter architecture showing the addition
of estimated modulation references md

i,ff and md
i,ff in the

control layer, based on (16), for feed-forward compensation.

TABLE I: System ratings & parameters

Item Value
Rated power P 15 kW

Grid voltage V a
i 120 V

Dc-bus voltage Vdc 400 V
Dc-bus capacitor Cdc 600 µ F

Switching frequency fs 20 kHz
Filter inductor Lf 0.5 mH
Filter resistance rf 0.01 Ω

Current loop bandwidth fbw
i 1 kHz

Proportional gain kp 3 Ω

Integral gain ki 60 F−1

appropriate sign. These are evaluated as follows,

md
i,ff =

ṽnpm̂
d
i

0.5Vdc
, mq

i,ff =
ṽnpm̂

q
i

0.5Vdc
. (16)

The above reference signals are included in the control loop as
illustrated in Fig. 6. This procedure linearizes the 3L inverter
plant model for control design purposes into a first-order
transfer-function, G(s),

G(s) =
1

sLf + rf
. (17)

This allows the use of classical PI controller parametrizations
for achieving the desired control bandwidth f bw

i (see [23] for
PI gain selections). This is given as follows:

kp = (2πf bw
i )Lf , ki = kp

rf
Lf

. (18)

Note that only after carrying out such a linearization, the above
PI gains are precise and meaningful choices. It is also worth
mentioning that the 3L GFL-inverter plant after linearization
is same as the conventional 2L GFL-inverter [4], [23].

B. Improving Grid-current Quality
It is worth noting that the change of control input variables

for linearization, as explained above and illustrated in Fig. 6,
is tantamount to estimating and nullifying the nonlinear time
varying components (which essentially constitute the distur-
bance inputs to the system on the ac-side) via feed-forward
(FF) compensation in the control loop. This process eliminates
the lower-order harmonic distortions present in the injected
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Fig. 7: Comparison of average- and switched-model simulation results showing (a) dynamic response for 0% to 85% step change
in iq⋆i , (b) feed-forward modulation references obtained from the average model, and (c) three-phase grid-currents injected by
the GFL showing change in waveshapes before and after enabling feed-forward in the control loop.

-200

-100

0

100

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-25

-12.5

0

12.5

25

(a)

-100

0

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-100

0

100

(b)

0.2 0.3 0.4 0.5

-200

-100

0

100

200

-200

-100

0

100

200

(c)

Fig. 8: Comparison of average- and switched-model simulation results showing (a) case-i conditions (with two consecutive
step-changes in iq⋆i ), where, NP-voltage is noted to stabilize after the disturbance, (b) case-ii conditions, where, the kp change
destabilizes the NP voltage, and (c) case-iii conditions where a larger Lf renders the NP voltage unstable.

grid current on the ac-side. This will be illustrated in the
following section.

V. RESULTS AND DISCUSSION

For validating the proposed average dq-model, a full-order
switched-model simulation of the 3L GFL-inverter system
shown in Fig. 1, is carried out in MATLAB®Simulink and
its results are compared with that of the average model.
In the switched-model simulation, the grid voltage vector is
aligned withe the q-axis by the PLL. The system ratings and
parameters considered for the verification exercise are listed
in Table. I.

A. Dynamic Response and Feed-forward Compensation
Figure 7(a) compares the dynamic response of the three-

phase inverter line currents from both the switched-and
average-model simulations, for a step change of 0% to 85%
in real-current reference iq⋆i . While the switched-model cur-
rents carry an over-riding switching PWM current ripple,
a close match in the dynamics of average behavior of the
respective currents can be noted between the two results. In

Fig. 7(b,c), the feed-forward performance of the model in
nullifying the NLTV is illustrated. If the switching PWM ripple
is neglected in the GFL line currents, the deterioration in
current quality (quantified by total harmonic distortion, THD)
is caused primarily by the NLTV disturbances causing lower-
order harmonic distortions on the ac-side. To illustrate this
effect, a reduced filter value of Lf = 0.25mH is employed in
the power circuit, while scaling kp to maintain the control
bandwidth as f bw

i = 1kHz. In this setting, the estimated
modulation references md

i,ff and md
i,ff based on (16) are shown

in Fig 7(b). The distorted GFL currents and the observed
improvement in current quality after the feed-forward action is
enabled, from a THD of 5.1% to 1.1%, is shown in Fig 7(c).
B. Neutral-point Stability Assessment

For validating the NP stability analysis via simulation, three
test-cases of filter-and control-parameter selections are studied:
(i) Lf = 0.5mH, f bw

i = 1kHz with kp = 3Ω; (ii) Lf =
0.5mH, and kp changed from 3Ω to 6Ω, doubling f bw

i to
2kHz while also maintaining current loop phase-margin and
stability, and (iii) Lf =2mH, f bw

i = 1kHz, with kp = 12Ω.
Figure 8(a) shows the variation of actual ṽnp and its filtered
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average ¯̃vnp for case-i for two consecutive iq⋆i changes, where,
ṽnp is seen to be stable. A close match is noted between the
simulation and the model outputs with an RMS error of 0.1V.
This result establishes that for stable operating conditions,
the proposed GFL model is able to capture the dynamics of
both the average behavior of ṽnp as well as its instantaneous
variation (with 3rd-harmonic ripple) with high accuracy. Fig-
ure 8(b) shows the ṽnp behavior for case-ii, where, setting
kp to achieve 2kHz bandwidth (a nominal choice for high-
performance current controller) renders the NP unstable, even
though the current-loop is stable by design. While in case-iii,
a choice of Lf = 2mH, a typical value in power filter designs,
is noted to induce NP instability even with a stable current
controller in place, as illustrated in Fig 8(c). This exercise
establishes the sensitive nature of NP voltage to both power
and controller parameters, and the GFL model is shown to
accurately capture the onset of NP instability. Indeed, for all
the unstable cases, it can be noted that as the system response
diverges with time, the error between switched and average
model also correspondingly diverges, as it must for unstable
systems with right-half-plane poles.

VI. CONCLUSION

In this paper, we propose an averaged dynamic model of
the 3L-NPCI-based GFL-inverter that facilitates study of NP-
voltage dynamics and instability. We depart from the tradi-
tional space-vector perspectives and derive the system model
in state-space form in synchronous dq reference frame. This
reveals its nonlinear and time-varying nature. We present a
block-schematic dq-domain equivalent circuit of the average
3L GFL-inverter model, delineating the 2L inverter control
model contained with it and the additional dynamics aris-
ing from switching the NP branch. We utilize this model
for feed-forward compensation of nonlinear and time-varying
terms, which facilitates feedback linearization of the plant for
controller design as well as improvement of injected grid-
current quality, both of which have been demonstrated. We also
demonstrate the influence of power and controller parameters
on NP stability and highlight how typical choices of filter
and control-bandwidth values can also lead to NP instability
rendering the 3L GFL-inverter inoperable. The proposed aver-
age model is compact, comprehensive, accurate, and has been
validated through a suite of case-study comparisons with a
full-order switched-model simulation in MATLAB®Simulink.
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