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Abstract— This paper presents a condition for global asymp-
totic synchronization of Liénard-type nonlinear oscillators in
uniform LTI electrical networks with series R-L circuits mod-
eling interconnections. By uniform electrical networks, we mean
that the per-unit-length impedances are identical for the inter-
connecting lines. We derive conditions for global asymptotic
synchronization for a particular feedback architecture where
the derivative of the oscillator output current supplements the
innate current feedback induced by simply interconnecting the
oscillator to the network. Our proof leverages a coordinate
transformation to a set of differential coordinates that empha-
sizes signal differences and the particular form of feedback
permits the formulation of a quadratic Lyapunov function for
this class of networks. This approach is particularly interesting
since synchronization conditions are difficult to obtain by means
of quadratic Lyapunov functions when only current feedback
is used and for networks composed of series R-L circuits. Our
synchronization condition depends on the algebraic connectivity
of the underlying network, and reiterates the conventional
wisdom from Lyapunov- and passivity-based arguments that
strong coupling is required to ensure synchronization.

I. INTRODUCTION

Synchronization of Liénard-type oscillators has been
widely studied in recent years, and is of interest to a
variety of disciplines [1]–[4]. This work presents a set of
conditions for global asymptotic synchronization of identical
Liénard-type circuits coupled through a class of passive
electrical LTI networks with arbitrary topologies where the
interconnecting lines are modeled as series R-L circuits
with identical per-unit-length impedances. The problem setup
is motivated by the compelling application of controlling
power-electronic inverters in low-inertia microgrids where
regulating inverters to emulate the dynamics of weakly
nonlinear limit-cycle oscillators is an effective strategy to
realize a stable power system as synchrony emerges without
any extraneous communication and feedback is at faster-
than-AC time scales [5], [6]. Additionally, our analysis setup
can conceivably permeate benefits to a wide array of other
circuits-related applications involving, e.g., solid-state circuit
oscillators, semiconductor laser arrays, and microwave oscil-
lator arrays [1], [7], [8]. Finally, the type of networks our
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results accommodate facilitate analysis of interconnections
of circuits in varied settings. Uniform networks (where inter-
connecting lines have identical per-unit-length impedances),
also considered in [9], [10], fall in the class of dynamic
networks that are amenable to our analysis.

To establish conditions for synchronization for the coupled
Liénard system, we construct a differential system (also re-
ferred to as an incremental system in [11], [12]) emphasizing
signal differences; construct a quadratic Lyapunov function
and derive conditions for its negative semi-definiteness. We
arrive at a condition that is related to the algebraic con-
nectivity of the network and suggests that strong coupling
guarantees synchronization of the oscillators. Additionally,
similar to the approach in [9], we also make use of Kron
reduction (a model reduction procedure, see [13]) to extend
our analysis to a wider class of network topologies.

Broadly related to our efforts is a rich body of literature
that has examined synchronization in networks of coupled
oscillators and complex dynamical systems [14]–[16]. In par-
ticular, our work leverages notions from incremental stability
theory in a similar vein as Lyapunov- and passivity-based
methods [12], [17]–[21], and departs from the alternative
input-output L2 methods in [9], [11], which allows us to
relax the Lipschitz-boundedness condition in [9]. Using
a particular feedback scheme (where, in addition to the
static current output of the oscillator, we add its derivative),
we construct a closed-loop system that is equivalent to
a static diffusive interconnection. This allows us to tailor
incremental-stability arguments to the particular setting of
uniform electrical networks and demonstrate synchrony with
the aid of standard Lyapunov functions. Recently, controllers
are proposed in [22], based on incremental output-feedback
passivity, to relax the Lipschitz boundedness for synchro-
nization of Lur’e nonlinear systems (which includes Liénard-
type systems) in networks without shunt elements or the case
when Kron reduction yields identical shunt elements. The
modelling and analysis framework in [20]–[22] requires the
edges (lines connecting the nonlinear circuits) to be strictly
input passive, e.g., a parallel RL interconnection, whereas
the analysis presented in this work allows us to handle series
RL interconnections which are strictly output passive. More
importantly, transmission-line models typically assume the
circuit model of a series RL interconnection, so this problem
setup is relevant to the power-network context.

Our previous effort on analyzing synchronization of cou-
pled Liénard oscillators resorted to averaging [23], [24],
which is only valid in a quasi-harmonic regime, i.e., when
the limit-cycles are almost circular—corresponding to mostly
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sinusoidal oscillations without higher-order harmonics. We
make no assumptions of the sort in this work, and the results
hold for non-circular limit cycles as well. Furthermore, this
work extends the analysis carried out in [24] for resistive
networks to include the class of dynamic networks we con-
sider here. Related work also includes the synchronization
analysis of coupled identical Liénard oscillators presented
in [4] which tackles the more general problem with nonlinear
asymmetric couplings, but only considers near-sinusoidal
operation.

The remainder of this paper is organized as follows.
Section II introduces the models for the oscillators and
the electrical network, and the coordinate transformation of
the system to differential coordinates. In Section III, we
establish global asymptotic synchronization conditions for
the system of coupled circuits leveraging Lyapunov stability
theory. Simulations are provided in Section IV to validate
the approach. We conclude the paper in Section V.

II. SYSTEM OF COUPLED LIÉNARD CIRCUITS

In this section, we begin with a brief background about
the Liénard oscillator model and then provide a description
of the network interactions.

A. Nonlinear Oscillator Model

Liénard’s equation is a nonlinear second-order differential
equation of the general form

ẍ+ f(x)ẋ+ g(x) = 0. (1)

This equation is commonly employed to study oscillations in
nonlinear dynamical systems, e.g., the Van der Pol oscillator
dynamics can be recovered as a special case of Liénard’s
equation [1] (see, also, Fig. 1). The following theorem
establishes conditions that the functions f(·) and g(·) need
to satisfy so that the system (1) exhibits a unique and stable
limit cycle around the origin.

Theorem 1 (Liénard’s Theorem [25]). Consider the
second-order nonlinear dynamical system (1). Assume that
the functions f(x) and g(x) satisfy the following properties:
(A1) f(x) and g(x) are continuously differentiable ∀x;
(A2) g(x) > 0,∀x > 0; and g(x) is an odd function, i.e.,

g(−x) = −g(x),∀x;
(A3) f(x) is an even function, i.e., f(−x) = f(x),∀x;
(A4) The odd function F (x) :=

∫ x

0
f(τ)dτ has exactly one

positive zero at x = z, is strictly negative for 0 < x < z,
is positive and nondecreasing for x > z, and F (x) →
∞ as x→∞.

Then, the system (1) has a unique and asymptotically stable
limit cycle surrounding the origin in the phase plane.

Here, we focus on forced identical Liénard-type oscillator
circuits that exhibit unforced oscillations at the frequency ω.
The terminal voltage, v, of such circuits is governed by:

v̈ + f(v)v̇ + ω2v = u̇ , (2)

where f(v) satisfies the conditions in Theorem 1, g(v) =
ω2v, and u(t) is the input to the oscillator. Figure 1 depicts

Fig. 1: The Van der Pol oscillator admits the dynamics in (2) with
ω = 1/

√
LC, ε =

√
L/C and f(v) = εαω(βv2 − 1), where

α and β are positive constants. The nonlinear voltage-dependent
current source is denoted by h(v) :=

∫
f(v)dv.

an example of the well-known Van der Pol circuit which falls
under this class of nonlinear oscillators. If the Van der Pol
oscillator circuit shown in Fig. 1 is coupled to an electrical
network, we note that u = −ι, where ι is the output current.

We now establish that the function f(·) cannot be un-
bounded from below and attains a finite lower bound. We
will find this result useful in Section III when we derive the
synchronization condition for the network of Liénard circuits.

Lemma 1. Consider the function f(x) that satisfies the
conditions in Theorem 1. Then, there exists a lower bound
−ρ < 0 such that f(x) ≥ −ρ.

Proof. Since f(x) is an even function, it suffices to consider
only the positive part of the real line as the domain for the
function. Since F (x) :=

∫ x

0
f(τ)dτ is strictly negative for

0 < x < z, then f(x) attains a negative value at at least
one point. Thus, the lower bound of f(x) has to be strictly
negative. Furthermore, F (x) is positive and nondecreasing
for x > z, therefore, F ′(x) = f(x) ≥ 0 for x > z. Hence,
the lower bound is attained in the interval 0 ≤ x ≤ z. Now,
as the function f(x) is continuously differentiable for all x,
it cannot be unbounded from below at a point in the compact
interval 0 ≤ x ≤ z or it would not be differentiable at that
point. Therefore, f(x) attains a lower bound which is a finite
negative number in the interval 0 ≤ x ≤ z.

B. Electrical Network

In this section, we describe the network that interconnects
the Liénard-type circuits. First, we begin by establishing the
notation that we will use in subsequent developments. Given
a real-valued N -tuple {u1, . . . , uN} denote the correspond-
ing column vector as u = [u1, . . . , uN ]T, where (·)T denotes
transpose. Denote the N ×N identity matrix as IN×N and
the N -dimensional vector of all ones as 1N . A construct that
we leverage to quantify the signal differences is the N ×N
projector matrix [11], [12]

Π := IN×N −
1

N
1N1TN . (3)

For a vector u, define ũ := Πu to be the corresponding dif-
ferential vector. Also, for the vector u, u̇ := [du1

dt , . . . ,
duN

dt ]T

denotes the vector with element-wise time derivatives.
The nonlinear circuits are coupled through a connected

and passive LTI network where the interconnecting lines
are modeled as series R-L circuits. We focus on R-L
networks with uniform line characteristics, i.e., all branches
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are made of the same material [10] and thus have a constant
impedance-per-unit length at any frequency. We refer to these
networks as uniform, and remark that with the description
above, it follows that the R-to-L ratio is constant for every
branch. This class of networks includes purely resistive and
inductive networks as special cases. Furthermore, we assume
that there are no shunt elements in the network. We remark
that the uniform R-to-L ratio modeling assumptions is very
reasonable in low-voltage electrical circuits and power grids,
whereas the latter assumption (absence of shunt elements)
refers to a network with all loads concentrated at the dissi-
pation element of the Liénard circuit, e.g., the shunt resistor,
R, in Fig. 1.

Some of the nodes of the electrical network are connected
to the nonlinear circuits and the rest have zero current injec-
tions. Notice that those nodes with zero current injections can
be systematically removed by elementary algebraic manipu-
lations at each such node. This model reduction procedure is
called Kron reduction. With reference to Fig. 2, notice that
node 4 in the Y network (left) has zero current injection and,
therefore, can be eliminated to yield an electrically equivalent
∆ network (right). We leverage this technique to extend our
analysis to R-L networks of varied topologies. Further details
on Kron reduction can be found in [13].

The following results show that Kron reduction of such
networks without shunt elements yields networks without
shunt elements in which the R-to-L ratio is constant across
the network and, therefore, it suffices only to consider
the Kron-reduced network with identical per-unit-length
impedances in subsequent developments.

Theorem 2. The following statements are equivalent:
(i) The original electrical network has no shunt elements.

(ii) The Kron-reduced network has no shunt elements.

Proof. See [9, Theorem 1].

Lemma 2. If the original network has uniform line char-
acteristics, then the Kron-reduced network also has uniform
line characteristics.

Proof. See Lemma 1 and Lemma 2 in [9].

In light of these results, we consider a Kron-reduced
network interconnecting the N Liénard-type circuits (without
shunt elements), recognizing that the originating network
may have had additional nodes that were eliminated. Let

Fig. 2: Kron reduction preserves the R-to-L ratio in the original
network: r′14

l′14
=

r′24
l′24

=
r′34
l′34

= γ = r12
l12

= r13
l13

= r23
l23
.

A = {1, . . . , N} denote the set of indices for the N circuits
and E = A × A denote the set of interconnecting lines
with rjk and ljk denoting the resistance and inductance,
respectively, for the line (j, k). Since the R-to-L ratio in
any branch is constant across the whole network, we have

rjk
ljk

=: γ ∀ (j, k) ∈ E , (4)

where γ > 0 is constant. Furthermore, let v = [v1, . . . , vN ]T

collect the voltages at the oscillator terminals and ι =
[ι1, . . . , ιN ]T denote the vector with current injections as its
entries.1 With this notation in place, we proceed with the
analysis of the voltage and current dynamics in the network.

Kirchoff’s voltage law for the branch in the Kron-reduced
network between the jth and kth oscillator yields

rjkιjk + ljk ι̇jk = vj − vk , (5)

where ιjk is the branch current. Dividing (5) by ljk gives:

γιjk + ι̇jk =
1

ljk
(vj − vk) . (6)

Now, the current injection at the jth node, ιj , is given by:

ιj =
∑N

k=1,k 6=j
ιjk , (7)

and, therefore, we have:

γι+ ι̇ = Lv , (8)

where L is a weighted Laplacian matrix with entries

[L]jk :=

{ ∑
(j,k)∈E 1/ljk, if j = k,

−1/ljk, if (j, k) ∈ E . (9)

The terminal voltage dynamics of the complete intercon-
nected system can be compactly described by

v̈ + ω2v + F (v)v̇ = u̇ , (10)

where u := [u1, . . . , uN ] denotes the feedback input to the
oscillator, and F (v) : RN → RN×N is a diagonal matrix
whose diagonal entries are specified as follows:

[F ]jj(v) := f(vj) ∀j ∈ A , (11)

where f(·) satisfies the condition in Theorem 1.

C. Dynamic Feedback

If the circuits are directly connected to the network,
u = −ι is equal to the circuit input current by virtue of
the electrical coupling. We refer to this as static current
feedback. Instead, consider the following dynamic feedback

u = −(γι+ ι̇). (12)

Leveraging (8), we see that the dynamic PD-type feedback
(12) given by the sum of the current and its derivative (see
Fig. 3) yields a closed-loop system that is equivalent to a
diffusive interconnection:

v̈ + ω2v + F (v)v̇ = −Lv̇ . (13)

1We denote currents by the lower-case Greek letter, iota, ι, and time rate
of change of current by ι̇.
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Remark 1 (Rationality and causality of the feedback). A
block-diagram representation of the overall system is shown
in Fig. 4, where D(s) = s+γ is the transfer function of the
PD-type feedback (12), and 1/D(s) is the transfer function
mapping branch flows to current injections in (8). Thus, the
rationality of the dynamic feedback (12) is to render the
interconnecting circuit a purely static one in closed loop.

The PD feedback (12) is not causal due to a derivative
element and cannot be implemented as such. This issue can
be remedied by pushing the term D(s) once around the loop
in Fig. 4. In our case, B (the oriented incidence matrix
of the network), BT are all linear systems that commute
with the scalar transfer function D(s). Hence, the feedback
(12) can be equivalently be implemented as in Fig. 5 where
the output of the Liénard-type dynamics is filtered through
D(s) which can all be done in software. For example, for
a converter controlled as a Van der Pol oscillator [6] as in
Fig. 1, instead of outputting the voltage v of the oscillator
at the converter terminals, the new output is γv + v̇, where
v̇ = 1/Cic with ic being the current across the capacitor.
Hence, the series combination of the nodal dynamics and
the filter D(s) (realized in software) can be implemented in
a causal fashion. Alternatively, the derivative element can be
implemented by means of a slow pole (lag element) [26].�

With this model in place, we introduce the coordinate
transformation that emphasizes signal differences next. To
this end, notice that for the differential vector, ṽ,

ṽ(t)Tṽ(t) = (Πv(t))T(Πv(t)) =
1

2N

N∑
j,k=1

(vj − vk)2. (14)

Hence, the problem of global asymptotic synchronization can
be cast as requiring:

lim
t→∞

ṽ(t) = lim
t→∞

Πv(t) = 0. (15)

Thus, by multiplying (13) from the left by the projector
matrix Π, we can transform the original problem of voltage
synchronization into an equivalent stability problem for the
differential system given by:

¨̃v + ω2ṽ = −Π (F (v) + L) v̇ . (16)

III. GLOBAL ASYMPTOTIC SYNCHRONIZATION IN
UNIFORM NETWORKS UNDER DYNAMIC FEEDBACK

This section focuses on deriving global asymptotic stabil-
ity conditions for the differential system described in (16).

Fig. 3: The postulated PD-type feedback (12) takes the form of the
sum of the derivative of the output current and a scaled version
of the current. The scaling, γ > 0, is a constant that denotes the
R-to-L ratio of the electrical network.

Theorem 3 (Global Asymptotic Synchronization). Con-
sider a network of N identical Liénard-type circuits with
unforced frequency ω and dynamics described by (16) in-
terconnected through a uniform network, which admits the
weighted-Laplacian depicted in (9). Denote the algebraic
connectivity corresponding to L by λ2(L), and recall that
−ρ denotes the global minimum for the function f(·). If

λ2(L) > ρ , (17)

then the terminal voltages of the Liénard-type circuits syn-
chronize asymptotically.

Proof. Since ΠL = LΠ, equation (16) equivalently reads as

¨̃v + ω2ṽ = −ΠF (v)v̇ − L ˙̃v . (18)

Consider the candidate Lyapunov function V(ṽ, ˙̃v) =

ω2ṽTṽ + ˙̃v
T ˙̃v. Its derivative along trajectories of (18) is

V̇(ṽ, ˙̃v) =− 2 ˙̃v
T(
L ˙̃v + ΠF (v)v̇

)
≤− 2 ˙̃v

T(
λ2(L)− ρ

)
˙̃v . (19)

The inequality above follows from

˙̃v
T
L ˙̃v ≥ λ2(L)‖ ˙̃v‖22, (20)

since ṽ = Πv is orthogonal to 1N spanning the nullspace of
L, and from the following manipulations:

˙̃v
T

ΠF (v)v̇ =

N∑
j=1

f(vj) ˙̃vj v̇j ≥ −ρ ˙̃v
T ˙̃v ,

where we leverage the property of the projector matrix Πṽ =
ṽ, and recognize that ρ > 0 from Lemma 1. Therefore, if

λ2(L) > ρ , (21)

then it follows that V is negative semidefinite and, therefore,
by Lyapunov stability theorem and LaSalle’s invariance prin-
ciple [27, Theorem 4.1 and 4.4], the origin of the differential
system in (16) is globally asymptotically stable.

Remark 2 (Internal stability). Theorem 3 establishes sta-
bility of the closed-loop system (13), where the branch
dynamics are cancelled; see Fig. 4. To establish internal
stability of the overall system, however, we need to ascertain
that the branch states are stable as well. The latter can be
done by conversion to a cascade system and ISS arguments
[26], and this is part of ongoing investigations. �

Comparison with static current feedback

As our previous results [6], [9], [23] (and other related
work [12]) typically rely on feedback only by the virtue of
static interconnection, i.e., u = −ι, it is only fitting that we
demonstrate the limitations of that approach for the setting
in this paper. The following discussion shows that with only
static current feedback, i.e., u = −ι, the standard analysis
to prove synchrony, based on standard quadratic Lyapunov
functions, actually fails. This is not merely a shortcoming of
the analysis methods, but the lack of synchrony can also be
observed in simulation studies; see Section IV.
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Fig. 4: B is the oriented incidence matrix of the network and
D(s) = s+γ is the transfer function for the feedback (12). Clearly,
the scalar and linear transfer function D(s) commutes with B-block
and can thus be used to cancel the uniform branch dynamics (8)
with transfer function 1/D(s).

When parameterizing the jth Liénard oscillator (2) in the
more common

(
vj(t), v

⊥
j (t)

)
coordinates (where v⊥j (t) =

ω
∫ t

0
vj(τ) dτ ), the system can be understood as a Lur’e sys-

tem: a linear harmonic oscillator (and thus a passive system)

v̇⊥j = ωvj , v̇j = −ωv⊥j − h(yj) + uj , yj = vj ,

where h(yj) =
∫ yj

0
f(s)ds is a static feedback nonlinearity,

and u represents the exogenous input. Thus, we fall square
into the incremental passivity-based analysis advocated in
[12], [20]–[22]. For the particular case of a Liénard oscillator
with a static current feedback u = −ι , the recent result
[22, Proposition 1] shows synchronization of the terminal
voltages v under condition (17), provided that the intercon-
necting network has strictly input passive edge dynamics, an
example of which are parallel RL circuits. Contrastingly, for
a typical transmission-line model for a power network given
by a series RL circuit the analysis in [22] fails. In particular,
the natural Lyapunov function (as used in [22] and suggested
by circuit and passivity theory)

V = ω2ṽTṽ + ˙̃v
T ˙̃v + ι̃Tι̃ ,

features an indefinite derivative. To see this, recall that if the
static feedback u = −ι is applied to the system (10), then the
closed-loop differential system is described by the equations

¨̃v + ω2ṽ = −ΠF (v)v̇ − ˙̃ι ; γι̃+ ˙̃ι = Lṽ .

The associated Lie derivative of the Lyapunov function is

V̇ = 2 ˙̃v
T
(
ω2ṽ + ¨̃v

)
+ 2ι̃T ˙̃ι ,

= − 2
(

˙̃v
T

(ΠF (v)v̇) + γι̃Tι̃
)

︸ ︷︷ ︸
≤0

+ 2
(
− ˙̃v

T
+ ˙̃v

T
L
)
ι̃︸ ︷︷ ︸

indefinite

.

In contrast, for our parameterization of the Liénard-type
oscillator in (2), with the dynamic series-RL circuit model
for the interconnecting lines (5), (7), under the uniformity
assumption (4), and for the dynamic current feedback (12),
we can guarantee synchronization of the terminal voltages v.

Fig. 5: Equivalent closed-loop system as in Fig. 4 where D(s) has
been pushed around the loop as it commutes with the blocks. This
provides us with a causal implementation.

IV. NUMERICAL SIMULATION RESULTS

To validate our approach, we consider a uniform R-L
network with resistance-to-inductance ratio (branch resis-
tances and inductances are provided below) γ = 20, with
a fully connected topology with no shunt-elements and a
collection of N = 3 Van der Pol oscillators (see Fig. 6).
The dynamics of the oscillators are described by (2) with
f(v) = ε(βv2 − 1), from which it follows that ρ = ε. For
the simulations, we set ω = 2π60 rad/s and β = 1. The
network shown in Figure 6 has branch resistances r12 =
0.2 Ω, r13 = 0.3 Ω, r23 = 0.4 Ω and branch inductances
l12 = 10 mH, l13 = 15 mH, l23 = 20 mH.

We consider two cases: a) a quasi-harmonic regime,
i.e., when the output voltage is nearly-sinusoidal, and b)
a relaxation regime, i.e., when the oscillator produces a
nonsinusoidal but periodic waveform. These cases result
from the choice of the parameter ε as ε = 0.044 for the
first case and ε = 2.63 for the second case.

By Theorem 3, the system synchronizes with the dynamic
feedback u = − (20ι+ ι̇) if λ2(L) > ε = ρ. In either case,
λ2(L) = 172.5708 > ε, which guarantees synchronization.
To show the shortcomings of static feedback, we consider the
static feedback u = −ι for 0 ≤ t < 0.25 s following which,
at t = 0.25 s, the dynamic feedback u = − (20ι+ ι̇) is
applied. Fig. 7 (a)-(b) show the output voltages of the oscilla-
tor circuits for the quasi-harmonic and relaxation cases. The
output voltages do not reach synchrony under static feedback,
but they synchronize with the proposed dynamic feedback

Fig. 6: A collection of three Van der Pol oscillators connected
through a network with uniform R-to-L ratio γ = 20.
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t[s]

v
[V

]

0 0.1 0.2 0.3

−2

−1

0

1

2

(a)

t[s]

v
[V

]

0 0.1 0.2 0.3

−2

−1

0

1

2

(b)

Fig. 7: Terminal voltages for 3 Van der Pol oscillators: (a) Quasi-
harmonic case, ε << 1. (b) Relaxation case, ε > 1. The current
feedback in (12) is applied at t = 0.25 s.

conforming to the derived synchronization condition.

V. CONCLUDING REMARKS

We presented a set of conditions for global asymptotic
synchronization of identical Liénard-type circuits in a class
of uniform electrical networks where the per-unit-length line
impedances are identical. Our analysis was based on stan-
dard Lyapunov arguments for a particular feedback, and we
derived a condition on algebraic connectivity of the network
to ensure synchronization of the nonlinear oscillators. As
a part of future work, we would like to generalize this
set of results to incorporate networks with heterogeneous
R-to-L ratios and with shunt elements. Furthermore, as
Kron reduction with shunt elements could potentially lead
to heterogeneous oscillators, extending the result to non-
identical Liénard oscillators is also a part of the ongoing
investigations.
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