
Phase Balancing in Globally Connected Networks of
Liénard Oscillators

Mohit Sinha, Florian Dörfler, Brian Johnson, and Sairaj Dhople

Abstract— We synthesize a feedback for a fully connected
network of identical Liénard-type oscillators such that the
phase-balanced equilibrium—the mode where the centroid of
the coupled oscillators in polar coordinates is at the origin—is
asymptotically stable, and the phase-synchronized equilibrium
is unstable. Our approach hinges on a coordinate transforma-
tion of the oscillator dynamics to polar coordinates, and peri-
odic averaging theory to simplify the examination of multiple
time-scale behavior. Using Lyapunov- and linearization-based
arguments, we demonstrate that the oscillator dynamics have
the same radii and balanced phases in steady state for a large set
of initial conditions. Numerical simulation results are presented
to validate the analyses.

I. INTRODUCTION

Collective motion of oscillators has been a widely stud-

ied problem in various disciplines spanning neuroscience,

engineering, and physics [1]–[8]. With emphasis to engi-

neering applications, designing feedback control laws such

that multiple agents achieve a desired formation is relevant

in problems such as coordination of unmanned autonomous

vehicles [9], control of vehicle platoons [10], [11], and

synchronization of inverters in electrical networks [12], [13].

In this paper, we study three types of equilibria for a

fully-connected system of Liénard-type oscillators in the

quasi-harmonic regime: the phase-balanced state, the phase

synchronous state, and the bi-cluster synchronous state. To

simplify exposition of these different equilibria, consider:

i) a collection of N oscillators (indexed in the set N ) with

phases θ1, . . . , θN ; and ii) the order parameter, Rejψ =
1
N

∑N
k=1 e

jθk , a metric that quantitatively captures phase

cohesiveness [7], [14], [15] and represents the centroid of all

oscillators (when conceptualized to be points on the circle).

The magnitude of the order parameter is a synchronization

measure [7]. The case where R = 0 corresponds to the

phase-balanced state, i.e., the phases θ1, . . . , θN are spaced

apart such that
∑N
k=1 e

jθk = 0 [7]. The case where R = 1
corresponds to the phase-synchronized state, i.e., the phases

θ1, . . . , θN are such that θ� = θk, ∀�, k ∈ N . One phase-

balanced set of particular interest is the splay state where

the phases are uniformly distributed around the circle, i.e.,

θk = k 2π
N + φ (mod 2π), k ∈ N , 0 ≤ φ ≤ 2π [16], [17].

Finally, the bi-cluster synchronous state refers to motion

with phases evolving in one of two phase-synchronized
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clusters, i.e., θ� = θk (mod π), ∀�, k ∈ N . Perfect phase

synchronization of Liénard-type oscillators (and dynamical

systems in general) has been widely studied (see [7], [18]

for detailed surveys). In particular, the diffusive intercon-

nection, which guarantees synchronization, corresponds to

a feedback which uses the graph Laplacian [19] as the

feedback gain matrix. Altering the signs of the feedback—

which we attempt in this work—ensures the stability of

the phase-balanced state instead [9], [17], [20]. Splay states

have also been investigated for various oscillator models

like Kuramoto oscillators [21], [22], kinematic models [9],

[23], and Van der Pol oscillators [17], [20] (which fall in

the class of Liénard oscillators considered here). We devote

attention to the phase balanced state which contain the splay

states, since this is pertinent to several engineering systems

such as autonomous underwater vehicles; where coordinated,

periodic trajectories can be used to collect data with requisite

spatial and temporal separation as remarked in [9], or in

the control for collective circular motion of nonholonomic

vehicles [24]. Another anticipated application is in networks

of dc-dc converters, where carrier wave interleaving, which

refers to the temporal separation of the triangular waves used

for PWM, minimizes current ripple and harmonics. Using

Liénard-type oscillators to locally construct triangular waves

of the same phase for each converter, we can guarantee that

the carrier waves for the converters are interleaved just by

virtue of the electrical network interaction.

A short description of our approach is provided next. We

begin by defining a state-space model for the coupled oscilla-

tors which we transform from Euclidean to polar coordinates.

Inspired by [25] and following our earlier work [26], we

make use of periodic averaging to obtain an autonomous

system. We then construct a Lyapunov function to ascertain

the convergence of the oscillator dynamics to the phase-

balanced state. Additionally, we show that all those solutions

that do not belong to the phase-balanced state are locally

unstable. In the spirit of [23], our work delineates a rigorous

Lyapunov analysis for an all-to-all coupling network and, in

doing so, provides a system theoretic understanding to the

observations in [3], [17], [20] which leveraged symmetry

and equivariant bifurcation theory to study the dynamics

of identical dissipative oscillators. Sufficient conditions for

anti-phase synchronization for a two-oscillator case for Van

der Pol oscillators has also been reported in [27] by using

contraction analysis; our work subsumes the result and

provides an analysis of globally coupled N Liénard-type os-

cillators. Furthermore, our approach also improves upon the
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methods used in [17] where linearization- and bifurcation-

based arguments are leveraged to explain the splay states

observed in coupled Van der Pol oscillators by providing

almost global guarantees for convergence to the solutions

and generalizing it to a class of Liénard-type oscillators.

The remainder of this paper is organized as follows.

Section II introduces the mathematical preliminaries and the

coupled nonlinear oscillator model. Building upon this, Sec-

tion III outlines the nature of the solutions of the system and

the stability of possible equilibria. We validate our analysis

through numerical simulations in Section IV and conclude

with some suggestions for future work in Section V.

II. PRELIMINARIES

We first outline notation used in the manuscript. We then

discuss the oscillator model and provide an overview of

periodic averaging that is leveraged in the analysis.

A. Notation

By way of notation, j :=
√−1, z∗ denotes the complex

conjugate of z ∈ C and ‖ · ‖2 denotes the Euclidean norm of

a complex vector. The N -dimensional space of nonnegative

reals is denoted by R
N
≥0, Z represents the set of integers,

C
N denotes the N -dimensional space of complex numbers,

and T
N , the N -dimensional torus. Also, for a matrix X ,[

X
]
jk

represents the entry in its jth row and kth column,

Ker(X) denotes the kernel of the matrix and KerR(X)
denotes intersection of Ker(X) with R

N . For vector x,
diag{x} denotes the diagonal matrix obtained by stacking

elements of x on the main diagonal. Finally, 1N and 0N
denote vectors of all ones and all zeros; ej is the unit basis

vector with 1 at the jth place and zeros elsewhere; and IN ,

the N ×N identity matrix.

B. Nonlinear Oscillator Model and Coupling Network

Liénard-type oscillators are described by the nonlinear

second-order differential equation of the general form [28]

ẍ+ f(x)ẋ+ g(x) = 0, (1)

where f : R → R (respectively, g : R → R) is an even

(respectively, odd) and continuously differentiable function.

We will frequently reference the function

h(x) :=

∫ x

τ=0

f(τ)dτ, (2)

which accordingly is odd and satisfies the Liénard theorem

criterion, i.e., it has exactly one positive zero at x = η > 0, is
strictly negative for 0 < x < η, is positive and nondecreasing

for x > η, and h(x) → ∞ as x → ∞.

For the coupled system, we consider the following forced

Liénard-type oscillator dynamics

ẍ+ εf(x)ẋ+ ω2x = εu̇, (3)

where u is the input, and ω and ε are positive constants. Since

we are interested in near-sinusoidal oscillations, we confine ε
to the limits 0 < ε 	 1. As ε → 0, we see that the unforced

version of (3) reduces to a simple harmonic oscillator with

resonant frequency ω. In addition to this standard setting for

Liénard-type oscillators, we make the following assumption

on the function h(x).

Assumption 1. h(x) = N
2 x admits a unique positive

solution, ρ, and
(∫ x

0
h (s) ds− cx2

) → ∞ as x → ∞ for
any real scalar c ∈ R.

This is a mild restriction and is satisfied, e.g., for the Van

der Pol oscillator for which h(x) = x3/3− x.

We study the collective motion of N ≥ 2 identical

Liénard-type oscillators described by dynamics (3) indexed

by elements in the set N := {1, . . . , N}. We will find it

useful to transcribe the dynamics of the jth oscillator (3)

using yj(t) = xj(t) and zj(t) = ω
∫ t
0
xj(τ)dτ as states:

żj = ωyj , ẏj = −ωzj − εh(yj) + εuj , (4)

where hj : R → R is defined in (2). The oscillators are

connected over an undirected graph G, and we assume that

the graph is complete and without self loops. Denoting

u = [u1, . . . , uN ]T and y = [y1, . . . , yN ]T, the interactions

between the oscillators are captured by the positive (and thus

repulsive) diffusive coupling

u = Ly, (5)

where L = NIN − 1N1TN is the Laplacian matrix of G.
C. Averaging Theory

In the parametric regime 0 < ε 	 1, the dynamical

behavior of individual oscillators is weakly nonlinear, and

they are weakly coupled. This results in multiple time-scale

behavior, the analysis of which can be significantly simplified

with periodic averaging [29]. We describe this briefly next.

Consider a time-varying dynamical system

ẋ = εp(x, t, ε), (6)

with time-periodic vector field p(x, t, ε) = p(x, t+T, ε) with

period T > 0, and 0 < ε 	 1. The associated time-averaged
dynamical system is given by

ẋ = εp(x) = ε
1

T

∫ T

τ=0

p(x, τ, 0)dτ. (7)

The solution of the averaged system (7) in the time scale εt
is O(ε) close to the solution of the original system (6), i.e.,

||x(t, ε)− x(εt)||2 = O(ε), ∀t ∈ [0, t∗], (8)

for some t∗ > 0 for which unique solutions exist for both (6)

and (7), and assuming ||x(0, ε) − x(0)||2 = O(ε). This lets

us work with averaged quantities without compromising on

accuracy while inferring the dynamics of the original system.

III. NATURE AND STABILITY OF COLLECTIVE MOTION

In this section, we characterize the nature of the trajecto-

ries of the coupled Liénard oscillators and study the stability

of a few equilibria of interest. We begin by leveraging

a coordinate transformation to polar coordinates and the
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weakly nonlinear property of the system to develop an

averaged model for our system to facilitate analysis.

A. Averaged Model

Consider the following bijective coordinate transformation

from the state-space model in (4) to polar coordinates:

zj → rj sin (ωt+ θj) , yj → rj cos (ωt+ θj) . (9)

In these new set of coordinates, the amplitude dynamics of

the j oscillator are given by:

ṙj = −εh(rj cos(ωt+ θj)) cos(ωt+ θj)

− ε
N∑
k=1

(rk cos(ωt+ θk)) cos(ωt+ θj), (10)

and the phase dynamics are given by

θ̇j =
ε

rj
h(rj cos(ωt+ θj)) sin(ωt+ θj)

+
ε

rj

N∑
k=1

(rk(cosωt+ θk)) sin(ωt+ θj). (11)

Using the averaging operation in (7), we can approximate

the amplitude and phase dynamics of the non-autonomous

system above in (10)–(11) with the following autonomous

system (we omit the simple but lengthy integral calculations)

ṙj = −εh(rj) +
ε(N − 1)

2
rj − ε

2

N∑
k=1,k �=j

rk cos(θjk),

θ̇j =
ε

2rj

N∑
k=1,k �=j

rk sin(θjk), (12)

where we define θjk := θj − θk for notational convenience.

The dynamics in (12) allow us to restrict attention to the

domain rj > 0, ∀j ∈ N . This is formalized next.

Proposition 1. The set

I := {(r, θ) ∈ R
N
≥0 × T

N : rj > 0, ∀j ∈ N} (13)

is positively invariant under the flow (12).

Proof. The state-space model (4) in Euclidean coordinates

can be extended to the following interconnected system:

ż = ωy ; ẏ = −ωz − εΓ(y) + εLy , (14)

where z = [z1, . . . , zN ]T and y = [y1, . . . , yN ]T collect

the states of the N connected oscillators, and Γ(y) :=
[h(y1), . . . , h(yN )]T, with h(·) defined in (2). The Jacobian

of (14) around the origin is denoted by J0 and it is given

by:

J0 :=

[
0 ωIN

−ωIN Λ

]
, (15)

where Λ := −εΓ′(0) + εL is a diagonally dominant ma-

trix with positive diagonal entries and is therefore posi-

tive definite. Let the set {λ1, . . . , λN} denote eigenvalues

of Λ. Then, 2N eigenvalues of J0 can be written as

0.5
(
λj ±

√(
λ2
j − 4ω2

))
, j ∈ N . Thus, the real parts of

the eigenvalues of the Jacobian at the origin are positive

and therefore the origin does not have a stable manifold and

is repulsive [30]. Now, going back to the averaged polar

coordinates, recall that

rj(t) =
ω

2π

∫ t

t−2π/ω

rj(τ)dτ . (16)

Since rj(t) is a nonnegative and 2π/ω-periodic quantity,

rj = 0 if and only if there exists an interval [t1, t2] of length
greater than the period, i.e., |t2 − t1| ≥ 2π/ω such that

rj(t) = 0 for t ∈ [t1, t2]. As the trajectories with rj(t) = 0
are unstable, we exclude them and infer that the set I is

positively invariant. �

B. Lyapunov Stability

Now, we use the averaged model in (12) to study the nature

of the trajectories of the collective motion of oscillators and

their stability. To this end, we begin by defining various sets

in which the equilibria of the dynamics could reside.

Definition 1 (Phase-balanced Set). The set that describes
collective motion where the centroid of the coupled oscillator
system in polar coordinates is at the origin referred to as the
phase-balanced set, S:

S :=
{
(r, θ) ∈ I : rj = rk,

N∑
k=1

ejθk = 0, ∀j, k ∈ N}
.

(17)

This is similar to the balanced set defined in [4], [7].

Another set of solutions, the cluster synchronous set, is

defined next.

Definition 2 (Bi-Cluster Synchronous Set). The set that
describes collective motion in which the oscillators belong
to one of two phase-synchronized clusters, which are π apart
themselves, is called the bi-cluster synchronous set, S ′:

S ′ :=
{
(r, θ) ∈ I : ṙj = 0 θjk = mπ ∀j, k ∈ N ,m ∈ Z

}
.

(18)

Finally, we define the phase-synchronized set. Note that

we are interested in stabilizing periodic orbits to the phase-

balanced set, S; and to show that with the feedback in (5),

the phase synchronous state (defined next) is not stable.

Definition 3 (Phase Synchronous Set). The set that de-
scribes the phase-synchronized collective motion is called
the phase synchronous set, S ′′:

S ′′ :=
{
(r, θ) ∈ I : rj = rk, θjk = 2mπ

∀j, k ∈ N , m ∈ Z
}
.

(19)

It is worth pointing out a few facts about the sets described

above. First, we note that S′′ ⊂ S′ and S′′∩S = ∅. Further-
more, S∩S′ �= ∅ if and only if the number of oscillators are

even and each of the two phase-synchronized clusters in S ′

have exactly the same number of oscillators. These aspects

are illustrated in Fig. 1. With the above definitions in place,
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SSS ′′S ′′

S ′S ′

Fig. 1: Equilibria from the phase-balanced set, S, the bi-cluster
synchronous set, S ′, and the phase-synchronous set, S ′′ are depicted
to demonstrate the nature of the trajectories in polar coordinates.
In particular, S ′′ ⊂ S ′ and S ′′ /∈ S. Furthermore, S and S ′ have
common elements if and only if the number of oscillators are even
and each of the two phase-synchronized clusters in S ′ have exactly
the same number of oscillators.

we construct a Lyapunov function to establish convergence of

trajectories generated by (12) starting from initial conditions

in the set I to the phase-balanced set, S , or the bi-cluster

synchronous set, S ′.

Theorem 1. Consider the collective motion of the N net-
worked oscillators, with the dynamics of each described by
the flow (12). Then, for all initial conditions (r0, θ0) ∈ I,
trajectories converge either to S (17) or S ′ (18).

Proof. The dynamics (12) can be written as the gradient flow:

ṙj = −∇rjV (r, θ) ; θ̇j = − 1

r2j
∇θj

V (r, θ), (20)

where V (r, θ) is a potential function given by

V (r, θ) = ε

( N∑
j=1

∫ rj

τ=0

h(τ)dτ − N − 1

4

N∑
j=1

r2j

+
1

2

N∑
j=1

N∑
k=1,k �=j

rjrk cos(θjk)

)
.

(21)

The level sets of V (r, θ) are closed (due to continuity),

bounded in θ (due to boundedness of the trigonometric

nonlinearities), and radially unbounded in r (due to Assump-

tion 1). Next, we investigate the time derivative of V (r, θ)
along the trajectories of the system, which is given by

V̇ (r, θ) =
(∇rjV

(
r, θ

))T
ṙj +

(
∇θj

V
(
r, θ

))T

θ̇j

= − (∇rjV
(
r, θ

))2 − r2j

(
1

r2j
∇θj

V
(
r, θ

))2

≤ 0.

Therefore, the sublevel sets of V (r, θ) are forward invariant,

and we conclude by LaSalle’s invariance principle [29,

Theorem 4.4] that the dynamics (12) converge to the largest

positively invariant set contained in{
(r, θ) ∈ I : V (r, θ) ≤ V (r0, θ0) , V̇ (r, θ) = 0

}
,

where we incorporated the positive invariance of I. Next,

we characterize the set of solutions that satisfy V̇ (r, θ) = 0,
i.e., the set of non-zero amplitude equilibria

∇rjV
(
r, θ

)
= 0;

1

r2j
∇θj

V
(
r, θ

)
= 0 , (22)

which, by using (12) and (20), can be compactly written as:

H + Cr = 0; Sr = 0 , (23)

where the entries of H , C and S are given by:[
H
]
j
= h(rj)− N

2 rj ,
[
C
]
j�

= 1
2 cos(θjl),[

S
]
j�

= 1
2 sin(θjl).

(24)

Notice that S is a null matrix when θjk = mπ ∀j, k ∈
N ,m ∈ Z. So, one set of solutions is represented by (18).

Now, let us consider the case when S is not a null matrix

and establish that (17) describes such solutions. Observe that

when S is not a null matrix, then S and C have the same

null space over the field of reals. (See Proposition 2 in the

Appendix.) Thus, (23) effectively reduces to:

H = 0, Sr = 0 . (25)

We note that H = 0 ensures that equilibrium radii are

identical, given by ρ which satisfies

h(ρ) =
N

2
ρ . (26)

Incorporating identical radii, we get S1N = 0 which implies

C1N = 0 (as they have identical null spaces) and therefore:

ejθj
N∑
k=1

(
e−jθk

)
= 0 ∀j ∈ N , (27)

which gives the phase-balanced state set S . Thus, all such

trajectories, where θjk �= mπ,m ∈ Z, ∀j, k ∈ N , originat-

ing in I converge to S . Thus, the dynamics either converge

to S (17) or S ′ (18). �
Recall that S ∩ S ′ is not necessarily empty. When the

number of oscillators are even and the number of oscillators

in each of phase-synchronized clusters in S ′ are equal then

such equilibria belong to S as well. (See Fig. 1.) As we

are interested in the asymptotic convergence to the phase-

balanced states, we show next that the equilibria that belong

to S ′ but not to S are locally unstable and thus almost all

trajectories in I converge to the phase-balanced state set.

C. Local Instability of Solutions

Now, we focus on the set of solutions described by S ′ (18),
of which the phase synchronized solutions, S ′′ (19), are a

special case and have been widely studied in the context

of Liénard-type oscillators [19]. We show that our chosen

feedback makes these equilibiria locally unstable if they do

not lie in S . The following theorem establishes the result.

Theorem 2. Equilibria of (12) that reside in the set S\S ′ are
unstable. Consequently, phase-synchronized solutions that lie
in the set S ′′ are also unstable.
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Proof. Linearizing (12) around the equilibria in S ′, we get:

J ′ =
[

J ′
A 0N

0N J ′
D

]
. (28)

The entries of J ′
A, J

′
B, J

′
C, and J ′

D are specified as:

[
J ′
A

]
j�

=

⎧⎪⎨
⎪⎩

ε
(
−h

′
(ρj) +

N−1
2

)
if j = �

− ε
2 if j �= l & θj� = 2mπ

ε
2 if j �= l & θj� = (2m+ 1)π

[
J ′
D

]
j�

=

⎧⎨
⎩

−∑N
�=1,� �=j [J

′
D]j� if j = �

− ε
2 if j �= l & θj� = 2mπ

ε
2 if j �= l & θj� = (2m+ 1)π

where m ∈ Z and ρj is the equilibrium radius for the jth os-

cillator. Since J ′ is block diagonal, therefore its eigenvalues

are eigenvalues of J ′
A and J ′

D. In the following, we focus

the analysis on the definiteness properties of the symmetric

submatrix J ′
D associated with the angle dynamics. Recall that

for the bi-cluster synchronous set, the oscillators belong to

one of the two clusters on the circle (see Fig. 1) which differ

in phase π (depending on the fact that the phase-differences

are odd or even multiples of π). The subsequent analysis can

be divided into three cases:

i) The sizes of the two clusters differ by more than one:
The diagonal entries J ′

D corresponding to the bigger cluster

are positive, and since eTj J
′
Dej > 0 (j is index of the

node in the bigger cluster), it is not negative semidefinite,

therefore J ′
D must have at least one positive eigenvalue [31].

Therefore, the solutions that lie in (18) such that the sizes of

the synchronized clusters (that are π apart) differ by more

than one are unstable.

ii) The sizes of the clusters differ by one: The diagonal entries

are either 0 (for the nodes in the bigger cluster) or −2 (for the

nodes in the smaller cluster). Thus, there exists a symmetric

principal minor of order 2 (corresponding to two nodes in

distinct clusters) of the form

ε

2
·
[
0 ±1
±1 −2

]

which features a positive eigenvalue. Therefore J ′
D cannot

be negative semi-definite [31].

iii) The size of both the clusters are the same: The solution

also belongs to the phase-balanced set, S . �
Corollary 1 (Main result). Consider the collective motion
of the N networked oscillators, with the dynamics of each
described by the flow (12). Then, for almost all initial
conditions (r0, θ0) ∈ I, the trajectories converge to the
phase-balanced set S (17).

IV. NUMERICAL SIMULATION RESULTS

We consider a fully connected network of Van der Pol os-

cillators, which are a special class of Liénard type oscillators,

with h(x) = ε(αx − βx3), where α > 0, 0 < ε << 1 and

β > 0 are real numbers. With parameters ε = 0.1, α = 0.1
and β = 0.1 we simulate two cases to demonstrate the nature

of the solutions. Figure 2 shows that for N = 3, a splay

xj(t)

y
j
(t
)

−15−10 −5 0 5 10 15

−10

0

10
θ∗1 = 97.29◦

θ∗2 = 217.65◦
θ∗3 = 337.79◦

ρ = 11.14

(a)

xj(t)

y
j
(t
)

−15−10−5 0 5 10 15

−10

0

10

θ∗1 = 184.56◦

θ∗3 = 258.61◦

θ∗4 = 5.26◦

θ∗2 = 77.93◦

ρ = 12.81

(b)

Fig. 2: a) A system of 3 fully-connected Van der Pol oscillators
achieves the splay state (a particular case of the phase-balanced state
S (17)). b) A system of 4 fully-connected Van der Pol oscillators
achieves the phase-balanced state S (17) that does not lie in S ′.
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(r
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)
−

ρ
)2
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Fig. 3: Amplitude error, defined as the squares of deviation from
the equilibrium, and phase error, defined as the sum of the complex
exponentials of the deviations of the phase at a particular node with
its neighbors decay to zero.

state is reached from arbitrary initial conditions, where the

oscillators have the same radii ρ = 21.9089, and their phases

are evenly spaced apart by 2π/3. However, for N = 4, we

achieve phases which are not evenly spread but satisfy the

equilibrium condition for angles laid down in Theorem 1. To

further validate the analysis, we plot the amplitude error and

phase error for five different scenarios as shown in Fig.2. The

radii settle down to ρ, as given by equation (26) in Theorem

1, and
∑N
j=1 e

j(θj) = 0.

V. CONCLUSION

We studied collective motion of identical Liénard-type

oscillators with all-to-all weak coupling that follow second

order dynamics of a weakly nonlinear Liénard system with a

given frequency and showed that for a fully-connected net-

work, the trajectories converge to the phase-balanced state.

Furthermore, we demonstrated equilibria outside the phase-

balanced set are locally unstable and therefore the trajectories

converge to the phase-balanced state set for large set of

initial conditions. We are working on leveraging this self-

organizing phenomenon in networks of dc-dc converters for

carrier wave interleaving for switching to minimize current

ripple and harmonics. Furthermore, extending this to other

graph topologies is also a part of ongoing investigations.
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APPENDIX

Proposition 2. Consider the matrices C and S defined
in (24). Further, assume that the S is not a null matrix,
i.e.,θjk �= mπ, ∀j, k ∈ N ,m ∈ Z. Then, the null spaces of
C and S (over the field of reals) are identical.

Proof. Define matrix E = C+jS. Since E is a outer product

of z0z
H
0 (and therefore rank 1) where z0 is a complex vector

with entries ejθj and therefore Ker(E) = Ker(zH0 ) (using

the positivity of the inner product). Therefore,

KerR (E) = KerR
(
zH0

)
=

{
v ∈ R

N : zH0 v = 0

}

=

{
[v1, v2, . . . , vN ]T ∈ R

N :

N∑
j=1

(cos θj)vj = 0 ,

N∑
j=1

(sin θj)vj = 0

}
.

This is the intersection of two hyperplanes in R
N . Since

we have excluded the cases when θjk = mπ,m ∈ Z, the

hyperplanes are distinct (hyperplanes are coincident when

tan θj = tan θk ∀j, k ∈ N ) and thus KerR(E) is an

(N−2)-dimensional real subspace of RN . From E = C+jS,
we obtain KerR(E) = KerR(C) ∩KerR(S). If all the three

kernels involved are N −2-dimensional, then this yields that

KerR(E) = KerR(C) = KerR(S). By using the fact that for

square matrices, X and Y , rank(X + Y ) ≤ rank(X) +
rank(Y ), we can conclude that S = (E − EH)/2j and

C = (E + EH)/2j have rank at most 2 ; to show the three

kernels involved are N − 2-dimensional, it suffices to show

that rank(C) and rank(S) are greater than 2. We can pick

m < n satisfying sin(θmn) �= 0 (by assumption) and then

observe that the determinants of ({m,n} , {m,n})-minors of

C and S are greater than zero. Since the rank of a matrix

is the largest order of any non-zero minor and we have a

second order minor which is nonzero, the rank is at least 2.

Thus, the nullspace of C and S are identical when S is not

a null matrix. �
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