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Abstract—This paper examines small-signal stability of electri-
cal networks composed dominantly of three-phase grid-following
inverters. We show that the mere existence of a high-voltage
power flow solution does not necessarily imply small-signal
stability; this motivates us to develop a framework for stability
analysis that systematically acknowledges inverter dynamics. We
identify a suitable time-scale decomposition for the inverter
dynamics, and using singular perturbation theory, obtain an ana-
lytic sufficient condition to verify small-signal stability. Compared
to the alternative of performing an eigenvalue analysis of the
full-order network dynamics, our analytic sufficient condition
reduces computational complexity and yields insights on the
role of network topology and constitution as well as inverter-
filter and control parameters in small-signal stability. Numerical
simulations for a radial network validate the approach and
illustrate the efficiency of our analytic conditions for designing
and monitoring grid-tied inverter networks.

I. INTRODUCTION

Problem description and motivation: The ongoing shift
from fossil-fuel-driven synchronous generators to power-
electronics-interfaced renewable energy is leading to changes
in how power grids are modeled, analyzed, and controlled.
While synchronous generators are generally rated at several
hundreds of MVA and installed on the transmission back-
bone, power electronics inverters are distributed across both
transmission and distribution subsystems and are generally
much smaller in capacity. Furthermore, synchronous gener-
ators have large rotating masses that buffer supply-demand
fluctuations and limit frequency excursions during transients,
whereas inverters have very different dynamics (attributable
dominantly to output filters and digital controllers [31]) and
they possess no moving parts. Future grids will have large
number of power-electronics circuits with highly distributed
architecture as inverters assume a more prominent role, and
this will necessitate the development of compatible models
and computationally efficient stability-analysis approaches.

Most commercial inverters on the market for residential
and utility-scale applications are grid-following. This means
inverters inject currents while synchronized to the voltage
at their terminals which is assumed to be set externally
by the bulk grid. In effect, grid-following inverters act as
voltage-following current sources. In recent years, there has
been increased attention on grid-forming inverter technology,
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whereby—much like conventional synchronous generators—
terminal voltage and frequency are modulated as a function
of real- and reactive-power injections. Indeed, while grid-
forming technology may very well be the solution for grids
with penetration levels approaching 100%, in the foreseeable
future, it is likely that the bulk grid will see conventional
synchronous generators co-exist alongside a large number of
grid-following inverters. For instance, in Oahu, Hawaii, at
least 800, 000 micro-inverters interconnect photovoltaic panels
to the grid, producing as much power as the state’s largest
conventional power plant, Konkar [8]. This motivates the prob-
lem of stability analysis for large-scale networks composed
dominantly of grid-following inverters that we examine.

The inverter dynamical model that we investigate is com-
posed of a current controller, a power controller, a PLL, and an
LCL filter. This is prototypical and mirrors models published
widely in the literature [16]–[19], [22], [23], [27]. We propose
a framework that leverages singular perturbation methods to
obtain an analytic, computationally light-weight condition for
small-signal stability assessment of three-phase distribution
networks with grid-following inverters. Our solution strategy
yields an analytic condition for stability that is agnostic to
system size and clearly highlights the role of the network
topology and pertinent system parameters on system stability.
Due to the complexity of the involved dynamics, most prior
art on stability of inverter-based systems has typically focused
on simplified models that neglect inner control loops with fast
dynamics [25]. Some exceptions are [1], [32], where stability
of full-order inverter models are studied in grid-connected
networks. However, these studies are restricted to parallel
networks of inverters and are not applicable to networks with
general topologies. In some cases, detailed inverter models
have been considered in general networks, but system stability
has only been studied for a single inverter or a small network
of inverters using numerical eigenvalue analysis. For instance,
small-signal stability is analyzed in the literature using eigen-
value analysis for a single grid-following inverter under unin-
tentional islanding in [28], for the IEEE 37-bus system with
7 inverters in [22], [23], for a radial network consisting of
3 inverters in [17], and for a single-machine-single-inverter
network in [13]. The article [15] provides interesting insights
about the role of inverter structure in small-signal stability
of transmission grids with different levels of penetration of
inverters. Using numerical simulations for the IEEE 9-bus
system with one grid-following and one grid-forming inverter,
this paper reveals the substantial effect of grid-following
dynamics in the small-signal stability of inverter networks.
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Understandably, while numerical eigenvalue analysis of the
linearized network is indeed a reasonable strategy, this ap-
proach comes with significant drawbacks. First, the large size
of the network combined with the high dimensionality of
the inverter model pose computational challenges to analysis.
Furthermore, studying small-signal stability by computing
eigenvalues of the linearized system does not reveal the role of
critical network attributes on system stability, insights, which
if formalized appropriately can facilitate analysis.

Several works have also used time-scale separation and sin-
gular perturbation to study the qualitative dynamic behaviors
of the inverter networks (see, e.g., [23] and the survey [25]).
In [25], a generic time-scale approach is used to study stability
of inverter networks. However, this approach does not explic-
itly identify the time-scale parameter and treats all the states of
the grid-following inverters as fast variables. In [23], a suitable
time-scale decomposition for a class of inverters is identified
and iterative scheme for model reduction is proposed.

On a tangential note, it must be acknowledged that there is a
growing body of work on stability assessment of synchronous
generators and grid-forming inverter systems, and this includes
approaches that have applied model-order reduction using
singular perturbation analysis. For instance, in [2], [6], [9],
[26], [29], model-reduction approaches based on singular
perturbation are proposed to study stability and control of
grid-forming inverters. In [14], singular perturbation is applied
to obtain a hierarchy of reduced-order models for inverters
in the grid-forming mode. In [2], a hierarchical time-scale
approach is used to estimate the trajectories of networks of
grid-forming inverters. In [26], a Lyapunov approach is used
to study multiple-time-scale separation in inverter networks
modeled as nested interconnected systems. We refer interested
readers to [24] for a survey on singular perturbation methods
and to [25] for a survey on application of singular perturbation
in stability and control of inverters.

Contributions: We make several contributions to the
study of small-signal stability of grid-following inverter net-
works. First, we show that adopting a static model for grid-
following inverters (as fixed sources of active and reactive
power) and neglecting fast dynamics induced by the inverters’
control loops may lead to erroneous conclusions regarding
stability (see Example 4). This underscores the importance
of acknowledging a full-order model for stability analysis. We
start by introducing a model for grid-tied inverter networks
that acknowledges line dynamics and where each inverter is
modeled using a 13th-order model. Next, we uncover a corre-
spondence between the equilibrium points of the dynamics and
the solutions of the algebraic power-flow equations. The main
contribution of this paper, i.e., an analytic sufficient condition
for small-signal stability, is derived in the context of a di-
mensionless transcription of the involved models which leads
to the identification of a physically insightful parametrization
of the inverters. We show that certain assumptions on the
range of parameters result in a time-scale decomposition of
the system. Using singular perturbation analysis, we propose
an analytic sufficient condition which guarantees small-signal
stability over a given parametric regime. As a unique con-
tribution, we emphasize that the dimensionless form of the

network equations as well as the regularity of the singular
perturbation problem (i.e., existence of isolated quasi-steady
state manifolds) are critical steps in a rigorous time-scale
analysis. Over this specified parametric regime, our analytic
sufficient condition can also be interpreted as a lower bound
on the stability threshold of the network and allows us to
check system stability with minimal computational complex-
ity. Furthermore, in the special case of resistive networks,
our sufficient condition reduces to checking Hurwitzness of a
Metzler matrix, something that can be implemented efficiently
via linear programming (see [21]).

In the literature, small-signal stability of inverter networks
is studied using eigenvalue analysis for the full-order models
(see, e.g., [15], [17]) or for the reduced-order models (see,
e.g., [2], [14], [23]). Compared to performing eigenvalue
analysis for the full-order system, our proposed analytically
driven sufficient condition reduces computational complex-
ity by addressing the high dimensionality of the underlying
dynamics (the inverter model we study has 13 dynamical
states) and it demarcates the role of the network (topol-
ogy and constitution) and pertinent inverter dynamics (filter
and controller parameters). Compared to the model-order-
reduction approaches in [2], [14], our framework can capture
the dynamic stability of networks of grid-following inverters.
Moreover, while many existing approaches in the literature
only outline iterative schemes for model reduction (see [23]),
our analysis provides an explicit reduced-order model. Finally,
we provide several case studies to validate the analysis.

Notation: Vectors and matrices. We denote the set of real
numbers by R, the set of complex numbers by C, the set of
complex numbers with negative real part by C−, the set of
binary n-tuples by Zn2 , and the n-dimensional torus by Tn.
We define i =

√
−1. We identify the complex plane C with

the real plane R2. For a complex number v = v1 + iv2 ∈ C,
the norm of v is |v| =

√
v2

1 + v2
2 and the argument of v,

arg(v), is the angle between v and the positive imaginary
axis. We denote the identity matrix of dimension n by In, the
n-column vector of zeros with 0n, and the n-column vector of
ones with 1n. For a matrix A = {aij} ∈ Cn×m, we denote the
trace by tr(A), the determinant by det(A), and ∞-norm by
‖A‖∞ = maxi

∑n
j=1 |aij |. For two real symmetric matrices

A,B ∈ Rn×n we write A � B if A−B is positive definite. A
real square matrix A ∈ Rn×n is Metzler if all its off-diagonal
entries are non-negative. For two square matrices A ∈ Rn×n
and B ∈ Rm×m, the tensor product is denoted by A⊗B. For
a vector x ∈ Cn, we denote diag(x) by [x].
From n-complex variables to 2n-real variables. For every
complex Z = X + iY ∈ C, the associated real variable in
the real plane is denoted by z = (x, y)> ∈ R2. We will

frequently use matrix J =

(
0 −1
1 0

)
, matrix H =

(
0 1
1 0

)
,

and the rotation matrix (parameterized by angle θ ∈ S1) by

R(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. Let u ∈ R2. We define matrix-

valued operators D : R2 → R2×2 and D′ : R2 → R2×2

by D(u) =

(
u1 u2

u2 −u1

)
and D′(u) =

(
u1 u2

−u2 u1

)
. All

the above matrices and operators can be extended to the n-
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dimensional complex and 2n-dimensional real spaces using
block diagonal structure. For the brevity of notation, we denote
the extended n-dimensional complex (2n-dimensional real)
matrix/operator with the same symbol as its 1-dimensional
complex (2-dimensional real) counterpart. Let V ∈ Cn and
v ∈ R2n be the associated real vector, then we define
‖v‖C,∞ = ‖V‖∞.
Algebraic graph theory. We denote an undirected weighted
graph by a triple G = (N , E , A), where N = {1, 2, . . . , n}
is the set of nodes and E ⊆ N × N is the set of edges.
The matrix A = {aij} ∈ Rn×n is the weighted adjacency
matrix. For every node i ∈ V , the degree of the node i is
given by di =

∑n
j=1 aij . For a fixed orientation on G, the

incidence matrix of the graph G is denoted by B ∈ Rn×m.
The Laplacian for the graph G is defined by L = D − A,
where D = diag(d1, d2, . . . , dn).
Power systems. We examine balanced AC systems, by which
we mean that the three-phase signals have the same amplitude
and they are phase shifted by 2π/3 rad. We consider two
different reference frames. The first is the global DQ-frame,
and it is a rotating reference frame tied to the nominal grid
frequency ωnom. The second, the local dq-frame, is with
reference to each inverter’s terminal voltage vector. For a
balanced three-phase signal x : R≥0 → R3, we denote
the dq-frame representation by xdq = (xd, xq)> ∈ R2 and
the DQ-frame representation by xDQ = (xD, xQ)> ∈ R2.
These are related as follows: xdq = R(δ)xDQ, where δ ∈ S
is the angle between the dq-frame and the DQ-frame. We
assume that all the electrical signals in the network are
balanced [3, Chapter 2]. Therefore, the voltage of the grid
is a three-phase AC signal given by the time-varying function
vg(t) = [vga(t), vgb(t), vgc(t)]

> ∈ R3 and in the global DQ-
frame, as vgDQ = [0, Vg]>, where Vg is the amplitude.

II. MODEL OF INDIVIDUAL INVERTER

We briefly overview the dynamics of the type of grid-
following 3-phase inverters examined in this work. For a more
detailed description of the model, see [19], [22]. The model
captures all relevant AC-side dynamics, and is composed of
a: i) phase-locked loop (PLL), ii) power controller, iii) current
controller, and iv) LC output filter. An illustrative block
diagram is given in Fig. 1. The PLL consists of a low-pass
filter with cut-off frequency ωc,PLL, and a PI controller with
gains kpPLL and kiPLL. The PLL dynamics are

v̇PLL = ωc,PLL(vod − vPLL), (1a)

φ̇PLL = −vPLL, (1b)

δ̇ = −kpPLLvPLL + kiPLLφPLL, (1c)

where vPLL and φPLL denote states of the low-pass filter
and PI controller, respectively, δ̇ is the output of the PI
controller, and vod is the d-component of the output voltage
of the inverter. The frequency of the PLL loop is defined by
ωPLL = ωnom + δ̇. The power controller consists of two low-
pass filters with cut-off frequency ωs and two PI controllers
with gains kps and kis. The pertinent dynamics are given by:

ṡavg = ωs(s− savg), (2a)

ĩldq = kpsH(sref − savg) + kis

∫
H(sref − savg)dt, (2b)

where savg = (pavg, qavg)> ∈ R2 collects the states of the
low-pass filters, ĩldq ∈ R2 capture the outputs of the PI
controllers (these are the references for the current controller),
sref = (pref , qref)> ∈ R2 collects the active- and reactive-
power references, and s = (p, q)> ∈ R2 collects instantaneous
active- and reactive-power outputs (measured at the point of
common coupling):

s = 3
2

(
vodiod + voqioq

voqiod − vodioq

)
= 3

2D(vodq)iodq.

The current controller consists of two PI controllers with gains
kpc and kic, with outputs to be the references for the inverter
voltage at the switching terminals vidq:

ṽidq = kpc

(̃
ildq − ildq

)
+ kic

∫ (̃
ildq − ildq

)
dt

+ ωPLLLf(J ildq).

(3)

Since the switching period is typically much shorter than the
filter and controller time constants, we assume that vidq =
ṽidq. The dynamics of the LC filter (composed of inductance,
Lf , and capacitance, Cf ) are given by

i̇ldq =
1

Lf
(vidq − vodq)− ωPLL(J ildq), (4a)

v̇odq =
1

Cf
(ildq − iodq)− ωPLL(J vodq), (4b)

where ildq denotes the inductor current, vodq denotes the
capacitor voltage, and iodq denotes the current injected by
the inverter into the grid terminals. (See Fig. 1.) Finally,
we introduce two new variables φs :=

∫
(sref − savg)dt,

and γdq :=
∫

(̃ildq − ildq)dt, that will aid in exposition. The
inner- and outer-loop control architecture examined here is
ubiquitous, see, e.g., [16]–[19], [22], [23], [27].

Now, we write the dynamical system of the inverters in the
global DQ-frame. To this end, we introduce:

γDQ = R(−δ)γdq, ilDQ = R(−δ)ildq, voDQ = R(−δ)vodq.

For vector y with time-varying entries, the time derivatives in
the global DQ-frame and local dq-frame are related by

ẏDQ − JR(−δ)δ̇yDQ = R(−δ)ẏdq.

Leveraging this identity, the dynamical model for the grid-
following inverter in the DQ-frame can be expressed as:

ẏ = f(y) + g(y)ioDQ + Csref , (5)

where y = (vPLL, φPLL, δ, φ
>
s , s
>
avg, γ

>
DQ, i

>
lDQ, v

>
oDQ)> ∈ R13

captures states of the inverter in the global DQ reference
frame, sref = (pref , qref)> ∈ R2 captures the references for
active and reactive power, f : R13 → R13 is the drift vector
field, and g : R13 → R13×2, and C ∈ R13×2 are control
vector fields. The mappings f, g and the matrix C are obtained
from the dynamics governing the current controller, the power
controller, the PLL, and the LC filter outlined previously.
Given the high dimension of the model that these constructs
encode, it would be very challenging to write out individual
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Fig. 1: Block diagram capturing the dynamics of a three phase grid-tied inverter and shorthand representation for the per-phase equivalent
circuit. Model includes dynamics arising from the phase locked loop (1), power controller (2), current controller (3), and LC filter (4) [20].

entries explicitly. We ensure that subsequent references to this
model are clear in context.

Remark 1. The model introduced above does not include
the DC-side dynamics. This is deliberate; including DC-side
dynamics tailored to, e.g., photovoltaic resources and energy-
storage devices, would take away from the generality of the
results that follow. Another reason that prompts the exclusion
relates to the nature of some DC resources. In particular, DC-
side dynamics can be neglected if one is interfacing with a
resource that presents stiff voltage-source-like behavior or as
a result of the application of appropriate fast-acting control
loops. It is also worth pointing out that control strategies for
DC-side resources, e.g., maximum power point tracking algo-
rithms, cannot always be neatly transcribed into state-space
models to facilitate analysis. This last aspect in particular,
provides excellent grounds for future work.

III. MODEL FOR GRID-TIED NETWORK OF INVERTERS

In this section, we derive the dynamical system model
governing the grid-tied network of inverters and loads and
study the equilibrium points of the system. We model the net-
work using an undirected, connected, matrix-weighted graph
G with node set (buses) N , edge set (branches) E ⊆ N ×N ,
and the symmetric matrix-valued edge weights (admittances)
akj = ajk = (RkjI2 + ωnomLkjJ )−1, where Rkj is the
resistance and Lkj is the inductance of the line (k, j), for
every (k, j) ∈ E . Suppose B is the incidence matrix of G.
There are three types of nodes in the network: we have one
grid bus with voltage vgDQ = [0, Vg]> denoted by 0. We have
n ≥ 1 inverter buses collected in the set NI, and ` load
buses collected in the set NL. This setup is well suited for
analysis of distribution networks with the stiff voltage source,
i.e., the grid bus, modeling the secondary side of the step-
down transformer that interfaces the distribution network with
the medium-voltage transmission network. The idea here being
that the aggregate representation of all transmission-side assets
presents itself as a stiff equivalent voltage source. Without
loss of generality, we assume that NL = {1, . . . , `} and
NI = {`+1, . . . , n+`} such thatN = {0}∪NL∪NI. Therefore
|N | = 1 + `+ n and we assume that |E| = m. Associated to
the matrix-weighted graph, G, we define the nodal admittance

matrix by Y = (B ⊗ I2)A(B ⊗ I2)> ∈ R2(1+`+n)×2(1+`+n),
where A ∈ R2m×2m is given by A = blkd(ajk). The partition
N = {0} ∪ NL ∪ NI induces the following decomposition
of incidence matrix B: B> =

(
B>0 B>L B>I

)
, where

B0 ∈ R1×m, BL ∈ R`×m, and BI ∈ Rn×m, and the following

partition for the admittance matrix Y =

[
Y00 Y0L Y0I
YL0 YLL YLI
YI0 YIL YII

]
.

For a given variable (parameter) y corresponding to the
inverter, we define vector y = (y>1 , . . . , y

>
n )>, where yk is

the associated variable (parameter) for the kth inverter.
Inverter model: Using (5), the governing dynamics for

all inverters in the network can be expressed as:

ẏ = F (y) +G(y)ioDQ + Csref , (6)

where, in y = (y>1 , . . . , y
>
n )> ∈ R13n, yk captures

all the dynamic states for the kth inverter, F (y) =
(f>1 (y1), . . . , f>n (yn))>, G(y) = diag (g1(y1), . . . , gn(yn)),
and C = diag (C1, . . . , Cn), where fk is the drift vector field
and gk and Ck are control vector fields of inverter k.

Load and line models: Let vk ∈ R2 be the kth load
voltage (in the DQ-frame) and ik ∈ R2 be the current
demand (in the DQ-frame) of the kth load. We collect
the nodal voltages and current demands for the loads in
vL = (v>1 , . . . , v

>
` )> ∈ R2` and iL = (i>1 , . . . , i

>
` )> ∈ R2`,

respectively. We assume loads are purely resistive; suppose
RL ∈ R` is the vector of load resistances, then we get

vL =
(
− [RL]⊗ I2

)
iL. (7)

One could introduce inductive and capacitive elements in
the load model, or indeed, consider more detailed dynamic
load models, but the added complexity would significantly
stretch the notation and distract from the underlying theme
and message of the main results. That said, the setup we
examine is well suited to networks with a high penetration
of inverters where a majority of loads and sources are all
interfaced through inverters.

Suppose that the vector of line resistances and line induc-
tances are denoted by RE ∈ Rm and LE ∈ Rm, respectively;
the nodal current injections by i = (i>g ,−i>L , i>oDQ)> and nodal
voltages by v = (v>gDQ,v

>
L ,v

>
oDQ)>. The governing dynamics

for the transmission lines are [25, Equation 4.10]:
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([LE ]⊗ I2)ξ̇DQ =
(
− [RE ]⊗ I2 − ωnom[LE ]⊗ J

)
ξDQ

+ (B> ⊗ I2)v, (8)

where ξDQ ∈ R2m is the vector of current flows in the lines.
Thus we have i = (B ⊗ I2)ξDQ.

A. Network Model and Dimensionless Transcription

From (6)–(8), the grid-tied inverter-network dynamics are:

ẏ = F (y) +G(y)(BI ⊗ I2)ξDQ + Csref ,

([LE ]⊗ I2)ξ̇DQ =
(
− [RE ]⊗ I2 − ωnom[LE ]⊗ J

)
ξDQ

+ (B> ⊗ I2)v, (9)

where v = (v>gDQ,v
>
L ,v

>
oDQ)> and vL =

(
−BL[RL]⊗I2

)
ξDQ.

We transcribe the differential equations (9) in a dimensionless
format. We assume that snom is the nominal power gen-
eration/consumption in the network. For each inverter, we
introduce the following dimensionless variables:

v̂PLL :=
vPLL

Vg
, φ̂PLL :=

kiPLL

VgkpPLL
φPLL, ŝavg :=

savg

snom
,

φ̂s :=
Vgkisφs

snom
, ŝref :=

sref

snom
, γ̂DQ :=

kicγDQ

Vg
, îlDQ :=

VgilDQ

snom
.

For the network, we introduce the dimensionless parameters

ξ̂DQ := Vgs
−1
nomξDQ, v̂ := V −1

g v, î := Vgs
−1
nomi.

While the above scaling may be reminiscent of the classical
per-unit representation frequently employed in power-system
analysis, there are several notable points of departure. In
particular, the classical per-unit representation is typically
only utilized to scale impedances, currents, voltages, and
power values for steady-state analysis of power networks
leveraging phasors. In contrast, we utilize the dimensionless
transcription for scaling time-domain signals beyond physical-
layer electrical quantities (referenced above) to also include,
e.g., controller states.

We also isolate time-constants of different sub-systems:
• for the PLL low-pass filter: τPLL = ω−1

c,PLL, τ ′PLL =
(VgkpPLL)−1;
• for the PLL PI controller: TPLL = kpPLL

kiPLL
;

• for the low-pass filter of the power controller: τs = ω−1
s ;

• for tracking in the power controller: τ ′s = (Vgkis)
−1;

• for the PI controller in the power controller: Ts =
kps
kis

;
• for the current controller: τc = V 2

g (kicsnom)−1;
• for the PI controller in the current controller: Tc =

kpc
kic

;
• for the LC filter: τLC = Lf√

ω−2
nomC−2

f +ω2
nomL2

f

and τ ′LC =

Cf√
ω2

nomC2
f +ω−2

nomL−2
f

and τ ′′LC = Cfωnoms
−1
nomV

2
g ;

• for line e ∈ E in the network: τe = Le√
R2

e+ω2
nomL

2
e

and τ ′e =

snomV
−2

g

√
R2
e + ω2

nomL
2
e.

With these preliminaries in place, the dimensionless grid-tied
inverter-network dynamics can be expressed as:

˙̂vPLL = [τ PLL]−1(v̂od − v̂PLL), (10a)
˙̂
φPLL = −[TPLL]−1v̂PLL, (10b)

δ̇ = [τ ′PLL]−1
(
φ̂PLL − v̂PLL

)
, (10c)

˙̂savg = [τ s ⊗ I2]−1(ŝ− ŝavg), (10d)
˙̂
φs = [τ ′s ⊗ I2]−1(ŝref − ŝavg), (10e)
˙̂γDQ = [τ c ⊗ I2]−1

(̃
ilDQ − îlDQ

)
+ J [δ̇]γ̂DQ, (10f)

˙̂
ilDQ = ([τ LC]−1[X ]⊗ I2) (v̂lDQ − v̂oDQ) + J [δ̇]̂ilDQ, (10g)
˙̂voDQ = ([τ ′LC][X ]⊗ I2)−1

(̂
ilDQ − îoDQ

− [τ ′′LC ⊗ I2]J v̂oDQ

)
, (10h)

˙̂
ξDQ =

(
[τ E ][τ

′
E ]⊗ I2

)−1(
(B> ⊗ I2)v̂ −Z ξ̂DQ

)
. (10i)

Above,

ĩlDQ = [Ts ⊗ I2]R(−δ)H ˙̂
φs +R(−δ)Hφ̂s,

v̂lDQ = [Tc ⊗ I2] ˙̂γDQ + γ̂DQ,

î = (B ⊗ I2)ξ̂DQ,

Z = [ωnomLE ]
−1[RE ]⊗ I2 + (Im ⊗ J ),

X = s−1
nomV

2
g [ω−2

nomC
−2
f + ω2

nomL
2
f ]

1
2 ,

v̂ = (v̂gDQ, v̂L, v̂oDQ)>.

The dimensionless grid-tied inverter network dynamics (10a)–
(10i) is (13n + 2m)-dimensional. We denote the state
of the dimensionless grid-tied inverter network by x̂ =
[v̂PLL, φ̂PLL, . . . , ξ̂DQ]> ∈ R13n+2m. Our first goal is to find
the equilibrium points of the dynamical systems (10a)–(10i).

B. Equilibrium points of the Dimensionless Dynamics

We start by introducing some notation. Let Y ∈ R(2n+2) be
the admittance matrix of the network. Then

Yred := YII − YIL
(
YLL + [RL]−1 ⊗ I2

)−1
YLI,

YC,red := Yred + ωnom ([Cf]⊗ J) ,

Yg := YI0 − YIL
(
YLL + [RL]−1 ⊗ I2

)−1
YL0,

w := −Y −1
red Y0gvgDQ,

(11)

and the dimensionless parameters Ŷ(·) := V 2
g s−1

nomY(·) and
ŵ := −Vgs−1

nomw and ZL = Z+
(
[ωnomLE ]

−1B>L [RL]BL
)
⊗I2.

We show that the equilibrium points of the dimensionless grid-
tied inverter network dynamics (10) are in correspondence
with the solutions of the following power-flow equations:

ŝref = 3
2D(v̂oDQ)̂ioDQ, (12)

îoDQ = Ŷredv̂oDQ + Ŷgv̂gDQ. (13)

Lemma 2. For a given reference-power injection ŝref to the
inverters, the following statements are equivalent:

(i) ((v̂ref
oDQ)>, (̂iref

oDQ)>)> ∈ R4n is a solution for the power-
flow equations (12) and (13);

(ii) for every α = (α1, . . . , αn)> ∈ Zn2 , x̂ref
α ∈ R13n+2m

is an equilibrium point of the dimensionless grid-tied
inverter-network dynamics (10) given by

x̂ref
α = (02n, δ

ref + απ, (−1)αφ̂
ref

s , ŝref , γ̂ref
DQ, î

ref
lDQ, v̂

ref
oDQ, ξ̂

ref
DQ)>

with

δref = −arg(v̂ref
oDQ), îref

lDQ = [τ ′′LC ⊗ I2]J v̂ref
oDQ + îref

oDQ,

φ̂
ref

s = HR(δref )̂iref
lDQ, γ̂ref

DQ = v̂ref
oDQ,
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ξ̂ref
DQ = Z−1

L

(
(B>I ⊗ I2)v̂ref

oDQ + (B>0 ⊗ I2)v̂gDQ

)
.

Proof. Regarding (ii) =⇒ (i), from the power-controllers’
dynamics in (10), we can conclude that if x̂ref

α is an equilib-
rium point, then we have ŝ = ŝref . This implies v̂ref

oDQ and
îref
oDQ satisfy (12). Moreover, at the equilibrium point x̂ref

α , the
line dynamics (10i) will simplify to îref = Ŷ v̂ref . Using Kron
reduction [7], this implies that v̂ref

oDQ and îref
oDQ satisfy (13).

Regarding (i) =⇒ (ii), suppose ((v̂ref
oDQ)>, (̂iref

oDQ)>)> is a
solution to the power flow equations (12) and (13). Then from
the PLL dynamics in (10), we have v̂PLL = 0n and v̂od = 0n.
Note that, v̂od = 0n can be written in the trigonometric form

vk,ref
oD cos(δk,ref) + vk,ref

oQ sin(δk,ref) = 0.

This implies that, for every k ∈ {1, . . . , n}, there exists αk ∈
Z2 such that δk,ref = −arg(vk,ref

oDQ )+αkπ. From (10), we have

ŝavg = ŝref . Finally, φ̂
ref

s , îref
lDQ, γ̂ref

DQ, and ξ̂ref
DQ can be found by

solving the remaining equations in (10).

Remark 3. The power-flow equations (12) (13) have been
studied extensively and many sufficient conditions for existence
and uniqueness of solutions have been developed; e.g., see [4],
[30]. Lemma 16 in Appendix restates a useful uniqueness
result from [30].

IV. STABILITY ANALYSIS OF THE DIMENSIONLESS
GRID-TIED INVERTER-NETWORK DYNAMICS

In bulk power-systems dynamics literature, it is common-
place to assume that the dynamics of the grid-following invert-
ers are much faster than the dynamics of grid-forming inverters
and synchronous machines [25]. This assumption justifies the
use of a static model for grid-following inverters such that the
inverter nodes are considered to be sources of constant (active
and reactive) power. Subsequently, the network operation is
described by the following power-flow equations:

02 = ŝref − 3
2D(v̂oDQ)̂ioDQ. (14)

Quite obviously, the static representation (14) does not cap-
ture stability. The following example shows that the internal
dynamics of the inverters can induce instabilities, even if the
power-flow equations in (14) admit a high-voltage solution.

Example 4. (Instabilities Induced by Inverter Dynamics)
Consider a radial grid-connected network consisting of 25
identical inverters (see Fig. 2 for a sketch). Suppose the invert-
ers have uniform reference power injections pref = p125, each
line has resistance R = 10−2 Ω and inductance L = 10−5 H,
and the grid voltage is vgDQ = [0, 120

√
2]> V(peak) with

constant frequency ωnom = 120π rad/s.
(i) Static model: If inverter power injections satisfy

p̂
∥∥∥Ŷ −1

red

∥∥∥
C,∞
≤ 3

8 , (15)

then, there exists a unique high-voltage, low-current solution
for the power-flow equations (14) (see Lemma 16 in the
Appendix).
(ii) Dynamic model: We use the dynamic model (5) for the
inverters (parameters are given in the fourth column of Ta-
ble III in Appendix). The governing equations for the network

are in (10), and condition (15) via Lemma 2 guarantees the
existence of a family of equilibrium points x̂ref

α , α ∈ Zn2 for
the system (10). Linearizing the system (10), we study local
stability of x̂ref

0 .
Figure 3 plots the maximum real part of the eigenvalues of
the linearized system (10) around the equilibrium point x̂ref

0

as a function of active-power injection. The red vertical line
is the threshold of the power injection for which the power-
flow equations admit a unique solution (obtained from (15)).
Notice that there are power injections for which a high-
voltage solution of the power-flow equations exists, however,
the corresponding equilibrium point x̂ref

0 is not stable.

A. Small-signal Stability via Time-scale Separation

We now focus on the small-signal stability of the di-
mensionless grid-tied inverter-network dynamics (10). Due to
high dimensionality and nonlinearity of the dynamic model,
studying small-signal stability is not analytically tractable.
Therefore, it is a reasonable goal to reduce the model order. To
that end, we identify a physically meaningful parametrization
of the inverters, and we show that under suitable assumptions,
this parametrization leads to a time-scale decomposition of the
system (10) which simplifies analysis. We begin by uncovering
time constants of different sub-systems.

Definition 5 (Singular perturbation parameter). For dynam-
ics (10), we define:

εI = max{‖τ PLL‖∞, ‖τ ′PLL‖∞, ‖τ s‖∞, ‖Ts‖∞, ‖TPLL‖∞,
‖τ c‖

1
2∞, ‖Tc‖

1
2∞},

εE = max
{
‖τ LC‖

1
2∞, ‖τ ′LC‖

1
2∞, ‖τ E‖

1
2∞

}
.

Using these, we define the singular perturbation parameter:

ε := max{εI, εE}. (16)

Remark 6. (i) Definition 5 establishes a physically
meaningful time-scale separation of the components
of the inverter network when ε � 1. In this case,
‖τ ′LC‖∞, ‖τLC‖∞, ‖τ E‖∞, ‖τ c‖∞, ‖Tc‖∞ ≤ ε2 which
implies that the line dynamics, the LC filter, and the
current controller are the fastest components. Moreover,
‖τ PLL‖∞, ‖τ ′PLL‖∞, ‖τ s‖∞ ≤ ε which implies that the PLL,
and averaging-part of the power controller (i.e., ŝavg) are
slower than the current controller, the line dynamics, and
the LC filter but they are faster than the power-tracking
controller (i.e., φ̂s) dynamics.
(ii) The assumption ε� 1 is equivalent to εI, εE � 1, which
is realistic in practice. For instance, in the inverter models
with the parameters in Table III in Appendix and those used
in [17], [22], [23], it holds that εI, εE ≤ 0.1.
(iii) τe = Le√

R2
e +ω2

nomL
2
e
≤ ω−1

nom, for every e ∈ E . Similarly,

one can show that ‖τ ′LC‖∞, ‖τ LC‖∞ ≤ ω
− 1

2
nom and this gives

an upper bound for the LC and line parameter εE ≤ ω−
1
2

nom.
(iv) For different parameters and control architectures, one
can conceivably identify a different singular perturbation
parameter and time-scale decomposition. However, we expect
the corresponding stability result to be similar.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 19,2022 at 20:42:08 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3084444, IEEE
Transactions on Control of Network Systems

JAFARPOUR et al. 7

pref
<latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit>

qref
<latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit>

pref
<latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit>

qref
<latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit>

pref
<latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit>

qref
<latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit>

pref
<latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit><latexit sha1_base64="TEnz83ZZO8JXkpkavX3Tf9DtrAQ=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi6LLoxmUF+4B2LJk004YmmSHJFMowf+LGhSJu/RN3/o2ZdhbaeiBwOOde7skJE8608bxvZ219Y3Nru7JT3d3bPzh0j47bOk4VoS0S81h1Q6wpZ5K2DDOcdhNFsQg57YSTu8LvTKnSLJaPZpbQQOCRZBEj2Fhp4LrJU9YX2IyVyBSN8nzg1ry6NwdaJX5JalCiOXC/+sOYpIJKQzjWuud7iQkyrAwjnObVfqppgskEj2jPUokF1UE2T56jc6sMURQr+6RBc/X3RoaF1jMR2skipF72CvE/r5ea6CbImExSQyVZHIpSjkyMihrQkClKDJ9ZgoliNisiY6wwMbasqi3BX/7yKmlf1n2v7j9c1Rq3ZR0VOIUzuAAfrqEB99CEFhCYwjO8wpuTOS/Ou/OxGF1zyp0T+APn8wdxAZQr</latexit>

qref
<latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit><latexit sha1_base64="gFwXlWZjNYvmrOMqHqMJhXVApMs=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwVWZE0GXRjcsK9gFtLZn0ThuaZMYkUyjD/IkbF4q49U/c+Tdm2llo64HA4Zx7uScniDnTxvO+ndLa+sbmVnm7srO7t3/gHh61dJQoCk0a8Uh1AqKBMwlNwwyHTqyAiIBDO5jc5n57CkqzSD6YWQx9QUaShYwSY6WB6z49pj1BzFiJVEGYZQO36tW8OfAq8QtSRQUaA/erN4xoIkAayonWXd+LTT8lyjDKIav0Eg0xoRMygq6lkgjQ/XSePMNnVhniMFL2SYPn6u+NlAitZyKwk3lIvezl4n9eNzHhdT9lMk4MSLo4FCYcmwjnNeAhU0ANn1lCqGI2K6Zjogg1tqyKLcFf/vIqaV3UfK/m319W6zdFHWV0gk7ROfLRFaqjO9RATUTRFD2jV/TmpM6L8+58LEZLTrFzjP7A+fwBcpSULA==</latexit>

Fig. 2: A radial network with n inverters connected to the grid bus.
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Fig. 3: Shaded region shows power injections that admit a unique
power flow solution that is, however, not small-signal stable.

Theorem 7 (Small-signal Stability). Consider the dimension-
less grid-tied inverter-network dynamics (10) with states in
R13n+2m and references ŝref ∈ R2n. The following hold:

(i) if ∥∥∥D′(ŵ)Ŷ −1
red (D′(ŵ))−1D′(ŝref)

∥∥∥
C,∞
≤ 3

8 , (17)

then there is a unique solution ((v̂ref
oDQ)>, (̂iref

oDQ)>)> for
the power-flow equations (12) and (13) and a family of
equilibrium points x̂ref

α , α ∈ Zn2 , for the grid-tied inverter
network dynamics (10) satisfying:∥∥v̂ref

oDQ − ŵ
∥∥
C,∞ ≤

1
2‖ŵ‖C,∞;

(ii) if the equilibrium point x̂ref
0 for the inverter network (10)

exists, [TPLL] � [τ PLL], and the 2n× 2n matrix

M := −
(
D(v̂ref

oDQ)Ŷred +D′(̂iref
oDQ)

)
×

Ŷ −1
C,redR(−δref)H[τ ′s ⊗ I2]−1 (18)

is Hurwitz. Then, there exists an ε∗ > 0 such that,
for every ε ≤ ε∗, the equilibrium point x̂ref

0 is locally
exponentially stable.

Proof. Regarding part (i), the proof follows from combining
Lemma 16 in Appendix and Lemma 2. Regarding part (ii),
consider the dimensionless grid-tied inverter network dynam-
ics (10). In order to perform the three time-scale singular
perturbation, we introduce the small variable σ = ε2. Then
it is clear that σ � ε� 1 and they induce a three-time-scale
separation for the dynamical system (10). Using (16) and
defining the variable ∆x ∈ R13n+2m by ∆x = x − xref

0 , we
get a three-time-scale decomposition of the system. We define
the states z1 ∈ R6n+2m, z2 ∈ R5n, and z3 ∈ R2n as follows:

z1 =
(

∆γ̂DQ ∆îlDQ ∆v̂oDQ ∆ξDQ

)>
,

z2 =
(

∆v̂PLL ∆φ̂PLL ∆δ ∆ŝavg

)>
,

z3 = R(−δ)Hφ̂s −R(−δref)Hφ̂ref

s ,

where z1 is faster than z2 and z2 are faster than z3. Note that
the variable z1 includes the states of the current controller and
the inductor currents and the capacitor voltages in the filters
and the current flows in the lines, the variable z2 includes
the output phase angle and the states of low-pass filter and PI
controller in the PLL and the state of low-pass filter in the
power control loop, and the variable z3 includes the state of
PI controller in the power control loop. The corresponding
time-scales are given by τ = t/σ and τ ′ = t/ε. Using
these time scales, the dimensionless grid-tied inverter network
dynamics (10) can be written as follows:

ż3 = g3(z1, z2, z3, ε),

εż2 = g2(z1, z2, z3),

σż1 = g1(z1, z2, z3, σ),

(19)

where g1, g2, g3 are suitably defined functions. Note that, by
Lemma 2, the equilibrium point xref

0 of the dimensionless
grid-tied inverter network (10) is independent of both σ and
ε. As a result, (z>1 , z

>
2 , z

>
3 )> = 013n+2m is an equilibrium

point for (19) for every σ, ε > 0. Our proof strategy is based
on successive use of singular perturbation with respect to the
time-scales τ and τ ′. The quasi-steady-state manifold for the
time-scale τ is the manifold z1 = h1(z2, z3) obtained by solv-
ing the algebraic equations g1(z1, z2, z3, 0) = 0(6n+2m) [11,
§11.2]. After some algebraic computations, the quasi-steady-
state manifold for the time-scale τ is given by:

∆γ̂DQ = Ŷ −1
C,red

(
R(−δ)Hφ̂s −R(−δref)Hφ̂ref

s

)
= Ŷ −1

C,redz3,

∆îlDQ = R(−δ)Hφ̂s −R(−δref)Hφ̂ref

s = z3,

∆v̂oDQ = Ŷ −1
C,red

(
R(−δ)Hφ̂s −R(−δref)Hφ̂ref

s

)
= Ŷ −1

C,redz3,

∆ξ̂DQ = Z−1
L (B>I ⊗ I2)Ŷ −1

C,redz3.

Since the quasi-steady-state manifold for the time-scale τ
is an isolated manifold, the singular perturbation problem is
in the standard form. Now, we introduce the error variables
e1, e2, e3 ∈ R2n and e4 ∈ R2m as follows:

e1 = ∆γ̂DQ − Ŷ −1
C,redz3, (20)

e2 = ∆îlDQ − z3, (21)

e3 = ∆v̂oDQ − Ŷ −1
C,redz3, (22)

e4 = ∆ξ̂DQ −Z−1
L (B>I ⊗ I2)Ŷ −1

C,redz3. (23)

Using these error variables, the boundary-layer dynamics
associated to the time-scale τ are:
de1

dτ
= −σ[τ c ⊗ I2]−1e2 (24a)

de2

dτ
= σ([τ LC]−1[X ]⊗ I2)(e1 − e3 − ([τ c]

−1[Tc]⊗ I2)e2),

(24b)
de3

dτ
= σ([τ ′LC][X ]⊗ I2)−1

(
e2 − (BI ⊗ I2)e4 − [τ ′′LC ⊗ I2]e3

)
,

(24c)
de4

dτ
= σ([τ E ][τ

′
E ]⊗ I2)−1((B>I ⊗ I2)e3 −ZLe4). (24d)

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 19,2022 at 20:42:08 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3084444, IEEE
Transactions on Control of Network Systems

8 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, SUBMITTED

We first show that for the boundary-layer dynamics (24), the
origin is the exponentially stable equilibrium point. It is easy
to see that since the graph is connected, we have Ker(B>I ) =
{0n}, the matrix ([τ ′′LC⊗I2])J is skew-symmetric and the ma-
trix −(ZL +Z>L ) is negative definite. Hence, using Lemma 15
in Appendix, the origin is the locally exponentially stable point
of the boundary-layer dynamics (24). Using [11, Theorem
11.4], the dynamical system (19) is locally exponentially stable
around the origin, if the reduced-order system:

ż3 = g3(h1(z2, z3), z2, z3, ε),

εż2 = g2(h1(z2, z3), z2, z3),
(25)

is locally exponentially stable around the origin. Now, we use
singular perturbation analysis with respect to the time-scale τ ′

to show that the dynamical system (25) is locally exponentially
stable around the origin. Note that, the quasi-steady-state
manifold for time-scale τ ′ is z2 = h2(z3) obtained by solving
the algebraic equations g2(h1(z2, z3), z2, z3) = 05n. Thus, the
quasi-steady-state manifold for time-scale τ ′ is given by:

∆v̂PLL =0n, ∆φ̂PLL = 0n, ∆δ = δBL(z3)− arg(v̂ref
oDQ),

∆ŝavg = 3
2D
(
Ŷ −1

C,redz3 + v̂ref
oDQ

) (
ŶredŶ

−1
C,redz3 + îref

oDQ

)
− sref .

where δBL : R2n → Rn is defined by δBL(z3) =

arg
(
Ŷ −1

C,red

(
z3 +R(−δref)Hφ̂ref

s

))
. Since the quasi-steady

state manifold for the time-scale τ ′ is an isolated manifold,
the singular perturbation problem is in the standard form. We
introduce the error variables e5, e6, e7 ∈ Rn and e8 ∈ R2n:

e5 = ∆v̂PLL, e6 = ∆φ̂PLL

e7 = ∆δ − δBL(z3) + arg(v̂ref
oDQ)

e8 = ∆ŝavg − 3
2D
(
Ŷ −1

C,redz3 + v̂ref
oDQ

)(
ŶredŶ

−1
C,redz3 + îref

oDQ

)
+ sref .

Thus, the boundary-layer dynamics associated to the time-
scale τ ′ is given by:

de5

dτ ′
= ε[τ PLL]−1(∆v̂od − e5),

de6

dτ ′
= −ε[TPLL]−1e5, (26a)

de7

dτ ′
= ε[τ ′PLL]−1(e6 − e5), (26b)

de8

dτ ′
= −ε[τ s ⊗ I2]−1e8, (26c)

where ∆v̂od is the d-component of R(δ)
(
Ŷ −1

C,redz3 + v̂ref
oDQ

)
−

v̂ref
odq. We show that the boundary-layer dynamics (26) are sta-

ble around the origin. Let e = (e>5 , e
>
6 , e

>
7 , e

>
8 )> ∈ R5n. Note

that the linearized boundary-layer equation dynamics around
the origin have the form ∆ė = S∆e, where S ∈ R5n×5n has

the upper block triangular form S =

(
S11 S12

02n×3n S22

)
with:

S11 =

−ε[τ PLL]−1 0n×n ε[τ PLL]−1[v̂oq]
−ε[TPLL]−1 0n×n 0n×n
−ε[τ ′PLL]−1 ε[τ ′PLL]−1 0n×n

 ,

S22 = −ε[τ s ⊗ I2]−1.

Note that v̂odq = R(δ)Ŷ −1
C,redz3 + v̂ref

odq. By Lemma 2, we know
that v̂ref

oq > 0n. This implies that, for z3 close enough to the

origin, we get v̂oq > 0n. Moreover, we have [TPLL] � [τ PLL].
Using Lemma 15 in Appendix, the matrix S is Hurwitz.
Therefore, the origin is the locally exponentially stable point
of the boundary-layer equations (26). Now, we consider the
reduced-order dynamics. The reduced-order model for the
multi-time-scale analysis is given by:

ż3 = g3(h1(h2(z3), z3), h2(z3), z3, 0). (27)

In order to study the stability of the reduced-order model (27),
note that z3 = R(−δ)Hφ̂s − R(−δref)Hφ̂ref

s . This implies
that the reduced order model (27) is given by:

ż3 = − 3
2R(−δref)H[τ ′s ⊗ I2]−1D

(
Ŷ −1

C,redz3 + v̂ref
oDQ

)
×(

ŶredŶ
−1

C,redz3 + îref
oDQ

)
.

Linearizing the above equation, we get ∆ż3 = M ′∆z3, where

M ′ := − 3
2R(−δref)H[τ ′s ⊗ I2]−1×(

D(v̂ref
oDQ)Ŷred +D′(̂iref

oDQ)
)
Ŷ −1

C,red.

Note that, for any scalar c ∈ R>0 and any matrix A ∈ R2n×2n,
the matrix A is Hurwitz if and only if the matrix cA is Hurwitz.
Moreover, by [10, Theorem 1.3.22], Hurwitzness of the matrix
M ′ is equivalent to the Hurwitzness of matrix M defined
in (18). This means that M ′ is Hurwitz and the origin is a
locally exponentially stable equilibrium point of the reduced-
order model (27) associated to the time-scale τ ′. Note that
the boundary-layer dynamics associated with the time-scale τ ′

are given by (26) and are shown to be locally exponentially
stable around the origin. Thus, using [11, Theorem 11.4],
there exists ε̂ > 0 such that, for every ε ≤ ε̂, the reduced-
order dynamics (25) associated to the time-scale τ are locally
exponentially stable around the origin. Note that the boundary-
layer dynamics associated to the time-scale τ are given by (24)
and shown to be locally exponentially stable around the origin.
Therefore, using [11, Theorem 11.4] for the time-scale τ , there
exists σ̂ > 0 such that, for every σ ≤ σ̂ and ε ≤ ε̂, the
dynamical system (19) is locally exponentially stable around
the origin. By defining ε∗ = min{

√
σ̂, ε̂}, the stability of

the equilibrium point of the dimensionless network dynamics
follows from condition (ii) for every ε ≤ ε∗.
Remark 8. (1) The largest value of ε∗ for which Theo-

rem 7(ii) holds is hard to compute. A standard lower
bound on ε∗ can be obtained via [12, Lemma 2.2].

(2) In [17], small-signal stability of inverter networks has
been studied using eigenvalue analysis for the full-order
systems. For large-scale networks, eigenvalue analysis
of the grid-tied inverter network dynamics (10) is com-
putationally complicated and, in general, it requires
linearizing the system (10) and checking stability of a
(13n + 2m)-dimensional matrix. Theorem 7(ii) uses a
time-scale analysis to eliminate the line dynamics, the
dynamics of the current controller, PLL, and LC filter
from small-signal stability analysis. The sufficient condi-
tion in Theorem 7(ii) significantly reduces computational
complexity by reducing the problem to checking that a
2n-dimensional matrix is Hurwitz;
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(3) By part (i), there exists a family of equilibrium point x̂ref
α

for the grid-tied inverter network dynamics (10). How-
ever, in part (ii), we focus on the equilibrium point x̂ref

0 .
The reason is that this trajectory is locally exponentially
stable when there is no power injection for the inverters;

(4) Theorem 7(ii) brings out the role of network topology,
the power injections/demands, and inverter parameters in
small-signal stability of inverter networks. For the matrix
M , the term Ŷred reveals the role of network topology.
The terms îref

oDQ, v̂ref
oDQ, and δref (obtained by solving

the power-flow equations (12)–(13)) reveal the role of
network topology and power injections/demands. Finally,
τ ′s reveals the role of inverters’ internal dynamics.

B. Corollaries

Corollary 9 (Single inverter connected to the grid). Consider
a single inverter with the reference power injection sref =
(pref , qref)> connected to the grid with voltage vgDQ =

(
0
Vg

)
through a line with resistance R and inductance L. If

‖sref‖2 ≤ 3
8

V 2
g√

R2 + ω2
nomL

2
, (28)

(i) there exist two equilibrium points x̂ref
0 and x̂ref

1 satisfying

‖v̂ref
oDQ − ( 0

1 ) ‖C,∞ ≤ 1
2 ;

(ii) if we have TPLL > τPLL, then there exists a ε∗ > 0 such
that, for every ε ≤ ε∗, x̂ref

0 is locally exponentially stable.

Proof. Regarding part (i), we define the dimensionless resis-
tance R̂ = V −2

g snomR and dimensionless inductance L̂ =

V −2
g snomL. Therefore, we get Ŷ −1

red =

(
R̂ −ωnomL̂

ωnomL̂ R̂

)
.

Then, (28) is equivalent to (17) and the result follows from
Theorem 7(i). Regarding part (ii), note that we have v̂ref

oDQ −
(R̂I2+ωnomL̂J )̂iref

oDQ = ( 0
1 ). Then, matrix M in (18) becomes:

M = −
(
D(v̂ref

oDQ) +D′(̂iref
oDQ)Ŷ −1

red

)
HR(−δref)[τ ′s ⊗ I2]−1

= −
(

2R̂îref
oD 1 + 2R̂îref

oQ

1 + 2ωnomL̂̂i
ref
oD 2ωnomL̂̂i

ref
oQ

)
HR(−δref)(τ ′s )−1.

Using simple algebraic manipulations, we get det(M) =
(2v̂ref

oQ − 1)(τ ′s )−1 and tr(M) = −2v̂ref
oq (τ ′s )−1. Since ‖v̂ref

oDQ−
( 0

1 ) ‖2 ≤ 1
2 , we have 2v̂ref

oQ ≥ 1. This implies that det(M) ≥ 0.
Moreover, for the equilibrium points x̂ref

0 , we have v̂ref
oq > 0.

This implies that tr(M) < 0 and M is Hurwitz. Thus, by
Theorem 7(ii), x̂ref

0 is locally exponentially stable.

In the next corollary, we study the special case of resistive
networks and provide a computationally efficient numerical
method for checking sufficient condition (18).

Corollary 10 (Resistive network of inverters). Consider the
dynamics (10). Suppose the lines are purely resistive and the
reference power injections and demands are purely active. The
following statements hold:

(i) if
∥∥∥[û]L̂−1

red [û]−1[p̂ref ]
∥∥∥
C,∞

≤ 3
8 , where û =

L̂−1
red L̂0gvgDQ, then there exists a family of equilibrium

points x̂ref
α for (10) with the property that∥∥v̂ref

oDQ − ŵ
∥∥
C,∞ ≤

1
2‖ŵ‖C,∞;

(ii) if additionally [TPLL] � [τ PLL] and the Metzler matrix

N := −[v̂ref
oq ][τ ′s]

−1 + [̂iref
oq ]L̂−1

red [τ ′s]
−1 (29)

is Hurwitz, then there exists ε∗ > 0 such that for every
ε ≤ ε∗, equilibrium x̂ref

0 is locally exponentially stable.

Proof. Regarding part (i), since the network is resistive and
power injections/demands are purely active, we know that

Ŷ −1
red = L̂−1

red ⊗ I2, ŝref = p̂ref ⊗ ( 1
0 ) ŵ = û⊗ I2.

Therefore:
∥∥∥D′(ŵ)Ŷ −1

red (D′(ŵ))−1D′(sref)
∥∥∥
C,∞

=∥∥∥[û]L̂−1
red [û]−1[p̂∗]

∥∥∥
C,∞

. The result then follows from

Theorem 7(i). Regarding part (ii), since there are no reactive-
power injections from the inverters, we have îref

od = 0n.
Since the input voltage for the PLL and power controller
is the output voltage of the LC filter (i.e., v̂ref

odq), and the
network is purely resistive, we have v̂ref

oD = 0n and as a
result δref = 0n. Alternatively, this observation can be
proved rigorously as follows. Since the power injections are
purely active, the power injection vector sref has the form
sref = pref⊗( 1

0 ). Therefore, starting from the initial condition
v(0) = ŵ = û ⊗ ( 0

1 ), the kth iteration in Lemma 16(ii) has
the form v(k) = u(k) ⊗ ( 0

1 ), for every integer k ∈ Z≥0.
This implies that, in the limit, we have v̂ref

oD = 0n and as a
result δref = 0n. Therefore, the matrix M in condition (18)
simplifies as shown below:

M = −
(

[v̂ref
oq ]⊗ I2 − [̂iref

oq ]L̂−1
red ⊗ I2

)
[τ ′s ⊗ I2]−1

= −[v̂ref
oq ][τ ′s]

−1 ⊗ I2 − [̂iref
oq ]L̂−1

red [τ ′s]
−1 ⊗ I2.

Using Lemma 14, matrix M is Hurwitz if and only if matrices

−
(
[v̂ref

oq ]± [̂iref
oq ]L̂−1

red

)
[τ ′s]
−1 (30)

are Hurwitz. Note that the active-power injections from the
inverters to the grid are non-negative in steady state. This
implies that îref

oq ≥ 0n. Thus, the matrices (30) are similar
to the following matrices:

−[τ ′s]
−1
2 [v̂ref

oq ][τ ′s]
−1
2 ± [τ ′s]

−1
2 [̂iref

oq ]
1
2 L̂−1

red [̂iref
oq ]

1
2 [τ ′s]

−1
2 .

Since the matrix [v̂ref
oq ] is positive definite and the matrix

[̂iref
oq ]

1
2 L̂−1

red [̂iref
oq ]

1
2 is positive semidefinite, the matrix

−[τ ′s]
−1
2 [v̂ref

oq ][τ ′s]
1
2 − [τ ′s]

1
2 [̂iref

oq ]
1
2 L̂−1

red [̂iref
oq ]

1
2 [τ ′s]

−1
2

is Hurwitz. Moreover, note that the matrix Lred is a grounded
Laplacian matrix and by [5, Exercise 10.11] its inverse L−1

red
is non-negative. Also, the matrices [τ ′s], [̂iref

oq ], and [v̂ref
oq ]

are all diagonal with non-negative diagonal elements. This
implies that the matrix −[v̂ref

oq ][τ ′s]
−1 + [̂iref

oq ]L̂−1
red [τ ′s]

−1 has
non-negative off-diagonal elements and therefore, it is Metzler.
The proof of Corollary (10) then follows from Theorem 7.
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Remark 11 (Computational complexity). One can check the
Hurwitzness of the Metzler matrix (29) using the following
feasibility problem:

Nξ < 0, ξ > 0. (31)

The problem (31) is a linear program and can be checked using
distributed methods whose computational time scales linearly
with the number of non-zero elements in N [21].

V. NUMERICAL SIMULATIONS

In this section, motivated by the recent increase in the
integration of renewable energy resources across power grids,
we study the stability issues associated with the expansion
of networks of grid-following inverters. Our goal is to use
Theorem 7 to study how the expansion of inverter networks
can affect their small-signal stability. We present numerical
simulation results for radial networks (see Fig. 2) with identi-
cal inverters and reference-power setpoints. Since Theorem 7
requires singular perturbation parameters εI, εE to be small,
we assume that εE is small and fixed while εI is small but
variable. We aim to answer the following questions:1

• For which values of the inverter parameter εI does The-
orem 7(ii) guarantee small-signal stability?

• How efficient is the condition (18) in Theorem 7(ii) to
analyze small-signal stability?

The first question can be interpreted as an inverter design
problem, while the second question can be interpreted as
a network monitoring problem. Solutions to these problems
are provided in Sections V-A and V-B, respectively. Our test
case is a family of radial networks {G(n)}n∈N, where G(n)
is the weighted undirected connected graph with the node
set (buses) Nn = {0, . . . , n} and the edge set (branches)
En = {(i, i + 1) | i = 0, . . . , n − 1} (see Fig. 2). For every
radial network G(n), the node 0 is the slack bus connected to
the grid with voltage vg = i(120

√
2) V(peak) and frequency

ωnom = 120π rad/s. Nodes {1, . . . , n} are the inverters
with snom = 1000 VA, and τPLL = ε2I , τ ′PLL = ε2I V

−1
g ,

TPLL = εI, τs = εI, τ ′s = (0.1)Vg, Ts = 10εI, τc =
Vg

snom
ε2I ,

Tc = ε2I , Lf = 10−3 H, and Cf = 2 × 10−3 F. For
every (j, k) ∈ En, the admittance of line (i, j) is given by
ajk = akj = (RI2 + ωnomLJ )−1, where the line resistance
is R = 0.02 Ω and line inductance is L = 2 × 10−5 H. We
first define the notion of a safe penetration level.

Definition 12 (Safe Penetration Level). Given a family of
networks {G(n)}n∈N and uniform reference power injection
sref ∈ R2, the Safe Penetration Level (SPL) for {G(n)}n∈N
is the maximum n ∈ N such that the dimensionless dynam-
ics (10) with underlying graph G(n) and reference powers
sref = 1n ⊗ sref has a locally stable equilibrium point.

Remark 13. (1) For our test case network, SPL of the
network depends on the parameter εI;

(2) One can use the matrix M defined in (18) to estimate
the SPL of the network; from Theorem 7(ii), there exists

1All the numerical simulations are performed in MATLAB R2016a on a
computer with Intel Core i5 processor @ 1.6 GHZ CPU and 4 GB RAM.

Fig. 4: SPL for different active power injections. Dashed lines show
estimates of SPL computed using Hurwitzness of matrix M .

ε∗ > 0 such that, for every ε ≤ ε∗, SPL of the network is
larger than this estimate.

A. Designing Grid-tied Inverter Networks

We now examine the efficiency of our analytic results in
Theorem 7 to design grid-following inverter networks focusing
on the small-signal stability of the grid. In particular, we focus
on estimating the SPL for the radial network shown in Fig 2
and numerically computing the largest range of parameter εI
for which Theorem 7(ii) holds. To carry out this task, we study
the effect of parameter εI for different active power injections
on the SPL of the system. The result is shown in Fig. 4, where
the overlapping dashed lines are the estimates of SPL based
on the sufficient condition in Theorem 7(ii). Thus, according
to Fig. 4, the largest domain εI for which Theorem 7(ii) holds
is (0, 0.0025], for the active power injections pref = 1000 W ,
pref = 1500 W , and pref = 2000 W , respectively. As εI
becomes smaller, the dashed and solid lines get closer to each
other and Theorem 7(ii) can be used to find the exact SPL.

B. Monitoring Grid-tied Inverter Networks

We now study the accuracy and computational efficiency of
condition (18) in Theorem 7(ii) for monitoring the small-signal
stability of the network. For our test case, we pick the parame-
ter εI = 0.001. Based on the discussion in Section V-A, we are
in the range of applicability of Theorem 7(ii). Recall that SPL
is the largest number of inverters in the network for which
the equilibrium point x̂ref

0 of full-order system (10) is locally
asymptotically stable. We let Tlin denote the computational
time of finding SPL, using the eigenvalue analysis for the
linearized system. We let SPLtest denote the largest number
of inverters in the grid for which the matrix M in (18) is
Hurwitz. Similarly, we let Ttest denote the computational time
for checking the Hurwitzness of matrix M in (18). Finally, we
let SPLstatic denote the largest number of inverters in the grid
for which condition (15) holds. We start with different uniform
reference active-power injections ŝref = 1n ⊗ (p̂, 0)> and
compute the thresholds SPL, SPLtest, and SPLstatic together
with the computational times for SPL and SPLtest, for each
active-power injections. The results are shown in Table I.
From Table I, one can see that (i) the static condition (15)
overestimates the value of SPL, (ii) condition (18) gives
an accurate lower bound for safe penetration level and its
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corresponding computation time (i.e., Ttest) is almost one
order of magnitude less that the computation time to perform
eigenvalue analysis for the full-order system (i.e., Tlin).

p̂ Tlin (s) Ttest (s) SPL SPLtest SPLstatic

0.80 0.5853 0.0774 22 20 35
1.00 0.5636 0.0793 22 20 31
1.20 0.5546 0.0741 22 20 28
1.40 0.6525 0.0767 22 20 26
1.60 0.5313 0.0767 21 20 24
1.80 0.5063 0.0888 21 20 23
2.00 0.5241 0.0766 21 20 22

TABLE I: Comparing the computation time and accuracy of condi-
tions (18) and (15) for small-signal stability. The unit of the quantities
Ttest and Tlin are seconds, the quantity of p̂ is dimensionless and the
quantities SPL and SPLtest and SPLstatic are integers.

VI. CONCLUSIONS & FUTURE WORK

We studied small-signal stability of grid-tied networks of
grid-following inverters and loads. Using a time-scale analysis
and a suitable choice of a family of parameters for the in-
verters, we presented an analytic sufficient condition for local
exponential stability. We showed that, compared to the direct
eigenvalue analysis of the full-order system, this sufficient
condition has the advantages of reducing the computational
complexity of checking small-signal stability as well as provid-
ing insights about the role of the network topology and inverter
parameters on stability. Directions for future work include
expanding the scope of the analytical approach to include
other inverter control methods, DC-side dynamics, and load
models. Expansive case studies focused on standard IEEE test
cases with deliberately introduced heterogeneity in network
and inverter parameters would also highlight the benefits of
the proposed analytical approach to practitioners and operators
engaged in system design and monitoring.

APPENDIX

Table (II) collects the variables and their symbols for grid-
following inverter model and Table (III) collects the parameter
values for this class of inverters.

Variable Symbol Variable Symbol
PLL low-pass filter state vPLL Current controller auxil-

iary state
γdq

PLL PI controller state φPLL Current controller output
voltage

vidq

PLL phase output δ Output current iodq
Power controller low-pass
filter state

save Power controller auxiliary
state

φs

Reference power injection sref Current controller refer-
ence current

ildq

Power controller auxiliary
state

φs PLL Frequency ωPLL

Current in the lines ξDQ LC-filter voltage vodq
Grid voltage vgDQ Grid frequency ωnom

TABLE II: Variables and their symbols for the inverter model.

Lemma 14. Let η1, . . . , ηm be the eigenvalues of a matrix
C ∈ Cm×m. For A,B ∈ Cn×n, λ is an eigenvalue of A ⊗
Im +B⊗C if and only if it is an eigenvalue of A+ ηkB, for
some k ∈ {1, . . . ,m}.

Parameter Symbol Values
from [23]

Values from
[17]

Grid frequency ωnom 377 rad/s 377 rad/s
Grid voltage amplitude Vg 169 V 169 V
PLL time constant τPLL 1.27e−5 1.27e−5
PLL time constant τ ′PLL 2.36e−2 4.7e−3
PLL time constant TPLL 1.25e−1 1.25e−1
Power controller time constant τs 1.99e−2 1.99e−2
Power controller time constant τ ′s 16.97 16.97
Power controller time constant Ts 1.00e−1 1.00e−1
Current controller time constant τc 1.70e−3 7.85e−4
Current controller time constant Tc 1.00e−2 1.43e−3
LC time constant τLC 2.37e−5 2.54e−5
LC time constant τ ′LC 2.37e−5 2.54e−5
Line time constant τe 1.90e−3 2.70e−3
Line time constant τ ′e 7.40e−3 1.31e−0

TABLE III: Dimensionless parameters of the inverter model.

Lemma 15. Let Γ,Π,Ξ,Υ,Σ,∈ Rn×n and Θ ∈ Rm×m be
diagonal matrices with positive diagonal entries such that
Γ � Σ. Suppose that K ∈ Rm×n is an arbitrary matrix with
Ker(K) = {0n}, P ∈ Rn×n is a skew-symmetric matrix, and
Z ∈ Rm×m is such that Z+Z> is negative definite. Then the
following matrices are Hurwitz:

A =

−Γ 0n×n Υ
−Σ 0n×n 0n×n

−Ξ Ξ 0n×n

, B =


0n×n −Γ 0n×n 0n×m

Ξ −Υ −Ξ 0n×m

0n×n Π ΠP −ΠK>

0m×n 0m×n ΘK ΘZ

.
Proof. The characteristic polynomial of matrix A is: λ3In +
λ2Γ + λΥΞ + ΥΞΣ = 0n. Since all matrices Γ, Σ, Ξ,
and Υ are diagonal, λi is an eigenvalue of A if and only
if λ3

i In + λ2
i (Γ)i + λi(Υ)i(Ξ)i + (Υ)i(Ξ)i(Σ)i = 0. The

diagonal elements of the matrices Γ, Σ, Ξ, and Υ are positive.
Therefore, using the Routh–Hurwitz criteria, λi ∈ C− if and
only if (Γ)i(Υ)i(Ξ)i > (Σ)i(Υ)i(Ξ)i. Thus, A is Hurwitz
if and only if Γ � Σ. To show that the matrix B is
Hurwitz, we use LaSalle’s invariance principle [11, Theorem
4.4]. Consider the dynamical system ẋ = Bx, where x =
(x1, x2, x3, x4)> ∈ R(6n+m). We define the Lyapunov func-
tion V : R(6n+m) → R by: V (x1, x2, x3, x4) = 1

2

(
x>1 Γ−1x1 +

x>2 Ξ−1x2 + x>3 Π−1x3 + x>4 Θ−1x4

)
Then, it is easy to check

that V̇ (x1, x2, x3) = −x>2 ΥΞ−1x2 + 1
2x>4 (Z+Z>)x4. There-

fore, by LaSalle’s invariance principle, the trajectories of the
system ẋ = Bx converges to the largest invariant set inside
S = {x ∈ R(6n+m) | V̇ (x) = 0}. It is easy to see that
S = {x ∈ R6n | x4 = x2 = 0n}. Let us denote the largest
invariant set inside S by L. Our goal is to show that L =
{0(6n+m)}. Suppose that γ : t 7→ (γ1(t), γ2(t), γ3(t), γ4(t))
is a trajectory which belongs identically to S. Then we
have γ4(t) = γ2(t) = 0n. First note that γ̇4(t) = 0
implies that ΘKγ3(t) + ΘZγ4(t) = ΘKγ3(t) = 0m. Since
Ker(K) = {0m}, we deduce that γ3(t) = 0. Moreover, we
see that γ̇2(t) = 0n =⇒ Ξγ1(t) = 0n. This implies that
γ1(t) = γ2(t) = γ3(t) = γ4(t) = 0. Thus, the only invariant
set inside S is {0(6n+m)} and thus B is Hurwitz.

Lemma 16. Consider (12), (13) with ŵ = −Ŷ −1
red Ŷ0g. Suppose

‖D′(ŵ)Ŷ −1
red (D′(ŵ))−1D′(ŝ∗)‖C,∞ ≤ 3

8 . Then, the following
statements hold:

(i) the power flow equations (12) and (13) has a unique
solution (v̂∗oDQ, î

∗
oDQ) with v̂∗oDQ ∈ Ω, where Ω ={

y ∈ R2n
∣∣ ‖y − ŵ‖C,∞ ≤ 1

2‖ŵ‖C,∞
}

;
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(ii) for every v0 ∈ Ω, the iteration procedure

vk+1 = ŵ + 2
3 Ŷ
−1

red D(vk)−1ŝ∗, ∀k ∈ N,

converges to v̂∗oDQ, where (v̂∗oDQ, Ŷred(v̂∗oDQ−ŵ)) is the
unique solution to (12) and (13).

Proof. By considering R2n ' Cn, part (i) and (ii) are straight-
forward generalizations of [30, Theorem 1]. One should note
the fact that the nodal variables in [30, Theorem 1] are average
power injections/demands and therefore the power flow equa-
tions have the form S = V I . However, in this paper, the nodal
variables are instantaneous power injections/demands and the
power flow equations read s = 3

2D(vodq)iodq.
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